Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The space of retractions of the $2$-sphere and the annulus
HTML articles powered by AMS MathViewer

by Neal R. Wagner PDF
Trans. Amer. Math. Soc. 158 (1971), 319-329 Request permission

Abstract:

Given a manifold $M$, there is an embedding $\Lambda$ of $M$ into the space of retractions of $M$, taking each point to the retraction of $M$ to that point. Considering $\Lambda$ as a map into the connected component containing its image, we prove that $\Lambda$ is a weak homotopy equivalence for two choices of $M$, namely, the $2$-sphere and the annulus.
References
    J. W. Alexander, On the deformation of an $n$-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407.
  • Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, PaĹ„stwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
  • Karol Borsuk, Concerning the set of retractions, Colloq. Math. 18 (1967), 197–201. MR 219043, DOI 10.4064/cm-18-1-197-201
  • R. Courant, Ăśber eine Eigenschaft der Abbildungsfunctionen bei konformer Abbildung, Gött. Nachr. (1914), 101-109. —, Bemerkung zu meiner Note: “Über eine Eigenschaft...", Gött. Nachr. (1922), 69-70. —, Dirichlet’s principle, conformal mapping, and minimal surfaces, Interscience, New York, 1950. MR 12, 90.
  • E. Dyer and M.-E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1958), 103–118. MR 92959, DOI 10.4064/fm-45-1-103-118
  • D. B. A. Epstein, Curves on $2$-manifolds and isotopies, Acta Math. 115 (1966), 83–107. MR 214087, DOI 10.1007/BF02392203
  • C. Gattegno and A. Ostrowski, ReprĂ©sentation conforme a la frontière; domaines gĂ©nĂ©raux, MĂ©m. Sci. Math., no. 109, Gauthier-Villars, Paris, 1949. MR 11, 425.
  • Mary-Elizabeth Hamstrom, Some global properties of the space of homeomorphisms on a disc with holes, Duke Math. J. 29 (1962), 657–662. MR 143185
  • Mary-Elizabeth Hamstrom and Eldon Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. 25 (1958), 521–531. MR 96202
  • Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
  • A. I. Markushevich, Theory of functions of a complex variable. Vol. III, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. Revised English edition, translated and edited by Richard A. Silverman. MR 0215964
  • Ernest Michael, Continuous selections. II, Ann. of Math. (2) 64 (1956), 562–580. MR 80909, DOI 10.2307/1969603
  • H. R. Morton, The space of homeomorphisms of a disc with $n$ holes, Illinois J. Math. 11 (1967), 40–48. MR 205233
  • Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.28
  • Retrieve articles in all journals with MSC: 54.28
Additional Information
  • © Copyright 1971 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 158 (1971), 319-329
  • MSC: Primary 54.28
  • DOI: https://doi.org/10.1090/S0002-9947-1971-0279763-0
  • MathSciNet review: 0279763