Engulfing continua in an $n$-cell
HTML articles powered by AMS MathViewer
- by Richard J. Tondra PDF
- Trans. Amer. Math. Soc. 158 (1971), 465-479 Request permission
Abstract:
In this paper it is shown that there exist open connected subsets ${D_1},{D_2}$, and ${D_3}$ of an $n$-cell $E$ such that, if $C$ is any proper compact connected subset of $E$ and $C \subset U,U$ open, then there exists a homeomorphism $h$ of $E$ onto itself such that $C \subset h({D_i}) \subset U$ for some $i,1 \leqq i \leqq 3$.References
-
J. W. Alexander, On the deformation of an $n$-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407.
- Morton Brown, Locally flat embeddings of topological manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.Β 83β91. MR 0158373
- Morton Brown, The monotone union of open $n$-cells is an open $n$-cell, Proc. Amer. Math. Soc. 12 (1961), 812β814. MR 126835, DOI 10.1090/S0002-9939-1961-0126835-6
- Morton Brown and Herman Gluck, Stable structures on manifolds. I. Homeomorphisms of $S^{n}$, Ann. of Math. (2) 79 (1964), 1β17. MR 158383, DOI 10.2307/1970481
- P. H. Doyle and J. G. Hocking, A decomposition theorem for $n$-dimensional manifolds, Proc. Amer. Math. Soc. 13 (1962), 469β471. MR 141101, DOI 10.1090/S0002-9939-1962-0141101-1
- J. F. P. Hudson and E. C. Zeeman, On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719β745. MR 166790, DOI 10.1112/plms/s3-14.4.719
- D. R. McMillan Jr., Summary of results on contactible open manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.Β 100β102. MR 0158376
- M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math. (2) 84 (1966), 555β571. MR 203708, DOI 10.2307/1970460 R. J. Tondra, The domain rank of an $n$-sphere and an $n$-cell, Notices Amer. Math. Soc. 15 (1968), 940-941. Abstract #68T-G21. E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Γtudes Sci., Paris, 1963 (mimeograph).
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 465-479
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279788-5
- MathSciNet review: 0279788