An approach to the polygonal knot problem using projections and isotopies
HTML articles powered by AMS MathViewer
- by L. B. Treybig PDF
- Trans. Amer. Math. Soc. 158 (1971), 409-421 Request permission
Abstract:
The author extends earlier work of Tait, Gauss, Nagy, and Penney in defining and developing properties of (1) the boundary collection of a knot function, and (2) simple sequences of knot functions or boundary collections. The main results are (1) if two knot functions have isomorphic boundary collections then the knots they determine are equivalent, and (2) if two knot functions determine equivalent knots, then the given functions (their boundary collections) are the ends of a simple sequence of knot functions (boundary collections). Matrices are also defined for knot functions.References
- R. H. Bing, An alternative proof that $3$-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37β65. MR 100841, DOI 10.2307/1970092
- Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Ginn and Company, Boston, Mass., 1963. Based upon lectures given at Haverford College under the Philips Lecture Program. MR 0146828 C. F. Gauss, Werke (8), Teubner, Leipzig, 1900, pp. 272, 282-286.
- W. Graeub, Die semilinearen Abbildungen, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1950 (1950), 205β272 (German). MR 0042709
- Morris L. Marx, The Gauss realizability problem, Proc. Amer. Math. Soc. 22 (1969), 610β613. MR 244984, DOI 10.1090/S0002-9939-1969-0244984-6
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159β170. MR 61822, DOI 10.2307/1969837
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Julius Nagy, Γber ein topologisches Problem von GauΓ, Math. Z. 26 (1927), no.Β 1, 579β592 (German). MR 1544876, DOI 10.1007/BF01475475
- L. P. Neuwirth, Knot groups, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton, N.J., 1965. MR 0176462 D. E. Penney, An algorithm for establishing isomorphism between tame prime knots in ${E^3}$, Dissertation, Tulane University, New Orleans, La., 1965. β, A knot projection has four small complementary domains (unpublished).
- D. E. Sanderson, Isotopy in $3$-manifolds. I. Isotopic deformations of $2$-cells and $3$-cells, Proc. Amer. Math. Soc. 8 (1957), 912β922. MR 90052, DOI 10.1090/S0002-9939-1957-0090052-8
- D. E. Sanderson, Isotopy in 3-manifolds. II. Fitting homeomorphisms by isotopy, Duke Math. J. 26 (1959), 387β396. MR 107231
- D. E. Sanderson, Isotopy in $3$-manifolds. III. Connectivity of spaces of homeomorphisms, Proc. Amer. Math. Soc. 11 (1960), 171β176. MR 112128, DOI 10.1090/S0002-9939-1960-0112128-9 P. G. Tait, On knots, Scientific Paper, I, Cambridge Univ. Press, London, 1898.
- L. B. Treybig, A characterization of the double point structure of the projection of a polygonal knot in regular position, Trans. Amer. Math. Soc. 130 (1968), 223β247. MR 217789, DOI 10.1090/S0002-9947-1968-0217789-3
- L. B. Treybig, Prime mappings, Trans. Amer. Math. Soc. 130 (1968), 248β253. MR 217790, DOI 10.1090/S0002-9947-1968-0217790-X
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 409-421
- MSC: Primary 55.20
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279800-3
- MathSciNet review: 0279800