Word problem for ringoids of numerical functions
HTML articles powered by AMS MathViewer
- by A. Iskander PDF
- Trans. Amer. Math. Soc. 158 (1971), 399-408 Request permission
Abstract:
A. The composition ringoid of functions on (i) the positive integers, (ii) all integers, (iii) the reals and (iv) the complex numbers, do not satisfy any identities other than those satisfied by all composition ringoids. B. Given two words $u,\upsilon$ of the free ringoid, specific functions on the positive integers, ${f_1}, \ldots ,{f_k}$ can be described such that $u({f_1}, \ldots ,{f_k})$ and $\upsilon ({f_1}, \ldots ,{f_k})$, evaluated at 1, are equal iff $u = \upsilon$ is an identity of the free ringoid.References
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Gerald Berman and Robert J. Silverman, Embedding of algebraic systems, Pacific J. Math. 10 (1960), 777–786. MR 120305
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- Martin Davis, Computability and unsolvability, McGraw-Hill Series in Information Processing and Computers, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958. MR 0124208
- Trevor Evans, The word problem for abstract algebras, J. London Math. Soc. 26 (1951), 64–71. MR 38958, DOI 10.1112/jlms/s1-26.1.64 G. Grätzer, Universal algebra, Van Nostrand, Princeton, N. J., 1967. MR 40 #1320.
- P. Hall, Some word-problems, J. London Math. Soc. 33 (1958), 482–496. MR 102540, DOI 10.1112/jlms/s1-33.4.482
- A. G. Kuroš, Lektsii po obshcheĭ algebre, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1962 (Russian). MR 0141700
- Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. MR 0051790
- A. I. Mal′cev, Algoritmy i rekursivnye funktsii, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0202591
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 399-408
- MSC: Primary 02.75; Secondary 08.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0280375-3
- MathSciNet review: 0280375