Locally noetherian commutative rings
HTML articles powered by AMS MathViewer
- by William Heinzer and Jack Ohm PDF
- Trans. Amer. Math. Soc. 158 (1971), 273-284 Request permission
Abstract:
This paper centers around the theorem that a commutative ring $R$ is noetherian if every ${R_P},P$ prime, is noetherian and every finitely generated ideal of $R$ has only finitely many weak-Bourbaki associated primes. A more precise local version of this theorem is also given, and examples are presented to show that the assumption on the weak-Bourbaki primes cannot be deleted nor replaced by the assumption that Spec $(R)$ is noetherian. Moreover, an alternative statement of the theorem using a variation of the weak-Bourbaki associated primes is investigated. The proof of the theorem involves a knowledge of the behavior of associated primes of an ideal under quotient ring extension, and the paper concludes with some remarks on this behavior in the more general setting of flat ring extensions.References
- Tomoharu Akiba, Remarks on generalized rings of quotients, Proc. Japan Acad. 40 (1964), 801–806. MR 180573
- Tomoharu Akiba, Remarks on generalized rings of quotients. II, J. Math. Kyoto Univ. 5 (1965), 39–44. MR 200286, DOI 10.1215/kjm/1250524555
- Jimmy T. Arnold and Robert Gilmer, Idempotent ideals and unions of nets of Prüfer domains, J. Sci. Hiroshima Univ. Ser. A-I Math. 31 (1967), 131–145. MR 227156 a. N. Bourbaki, Algèbre commutative. Chaps. 1, 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146. b. —, Algèbre commutative. Chaps. 3, 4, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027. c. —, Algèbre commutative. Chaps. 5, 6, Actualités Sci. Indust., no. 1308, Hermann, Paris, 1964. MR 33 #2660.
- Paul M. Eakin Jr., The converse to a well known theorem on Noetherian rings, Math. Ann. 177 (1968), 278–282. MR 225767, DOI 10.1007/BF01350720
- R. W. Gilmer Jr., Classroom Notes: A Counterexample to Two Conjectures in Ideal Theory, Amer. Math. Monthly 74 (1967), no. 2, 195–197. MR 1534188, DOI 10.2307/2315621
- Robert Gilmer and Jack Ohm, Primary ideals and valuation ideals, Trans. Amer. Math. Soc. 117 (1965), 237–250. MR 169871, DOI 10.1090/S0002-9947-1965-0169871-4
- William J. Heinzer, $J$-noetherian integral domains with $1$ in the stable range, Proc. Amer. Math. Soc. 19 (1968), 1369–1372. MR 231817, DOI 10.1090/S0002-9939-1968-0231817-6
- Paul Jaffard, Les systèmes d’idéaux, Travaux et Recherches Mathématiques, IV, Dunod, Paris, 1960 (French). MR 0114810
- Daniel Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81–128 (French). MR 254100
- Daniel Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81–128 (French). MR 254100
- Masayoshi Nagata, Some remarks on prime divisors, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 297–299. MR 118747, DOI 10.1215/kjm/1250775914
- Masayoshi Nagata, A type of subrings of a noetherian ring, J. Math. Kyoto Univ. 8 (1968), 465–467. MR 236162, DOI 10.1215/kjm/1250524062
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Noboru Nakano, Idealtheorie in einem speziellen unendlichen algebraischen Zahlkörper, J. Sci. Hiroshima Univ. Ser. A 16 (1953), 425–439 (German). MR 59316
- Jack Ohm, Semi-valuations and groups of divisibility, Canadian J. Math. 21 (1969), 576–591. MR 242819, DOI 10.4153/CJM-1969-065-9
- Jack Ohm and R. L. Pendleton, Rings with noetherian spectrum, Duke Math. J. 35 (1968), 631–639. MR 229627 a. D. Underwood, Ideal theory in non-noetherian rings, Thesis, University of Wisconsin, Madison, Wis., 1968.
- Douglas H. Underwood, On some uniqueness questions in primary representations of ideals, J. Math. Kyoto Univ. 9 (1969), 69–94. MR 246865, DOI 10.1215/kjm/1250524012 O. Zariski and P. Samuel, Commutative algebra. Vols. 1, 2, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1958, 1960. MR 19, 833; MR 22 #11006.
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 273-284
- MSC: Primary 13.25
- DOI: https://doi.org/10.1090/S0002-9947-1971-0280472-2
- MathSciNet review: 0280472