Invariant states
HTML articles powered by AMS MathViewer
- by Richard H. Herman
- Trans. Amer. Math. Soc. 158 (1971), 503-512
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281013-6
- PDF | Request permission
Abstract:
States of a ${C^ \ast }$-algebra invariant under the action of a group of automorphisms of the ${C^ \ast }$-algebra are considered. It is shown that “clustering” states in the same part are equal and thus the same is true of extremal invariant states under suitable conditions. The central decomposition of an invariant state is considered and it is shown that the central measure is mixing if and only if the state satisfies a strong notion of clustering. Under transitivity of the central measure and some reasonable restrictions, the central decomposition is the ergodic decomposition of the state with respect to the isotropy subgroup.References
- Johan F. Aarnes, On the continuity of automorphic representations of groups, Comm. Math. Phys. 7 (1968), 332–336. MR 223494
- Charles A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286–302. MR 206732, DOI 10.1090/S0002-9947-1967-0206732-8 André deKorvin, Expectations in operator algebras, Thesis, University of California, Los Angeles, 1967.
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- S. Doplicher, R. V. Kadison, D. Kastler, and Derek W. Robinson, Asymptotically abelian systems, Comm. Math. Phys. 6 (1967), 101–120. MR 216299
- Gérard G. Emch, Hubert J. F. Knops, and Edward J. Verboven, Breaking of Euclidean symmetry with an application to the theory of crystallization, J. Mathematical Phys. 11 (1970), 1655–1668. MR 264952, DOI 10.1063/1.1665307
- James G. Glimm and Richard V. Kadison, Unitary operators in $C^{\ast }$-algebras, Pacific J. Math. 10 (1960), 547–556. MR 115104 R. Haag, D. Kastler and L. Michel, Central decomposition of ergodic states (preprint).
- R. Haag, N. M. Hugenholtz, and M. Winnink, On the equilibrium states in quantum statistical mechanics, Comm. Math. Phys. 5 (1967), 215–236. MR 219283
- Richard V. Kadison, Transformations of states in operator theory and dynamics, Topology 3 (1965), no. suppl, suppl. 2, 177–198. MR 169073, DOI 10.1016/0040-9383(65)90075-3
- I. Kovács and J. Szűcs, Ergodic type theorems in von Neumann algebras, Acta Sci. Math. (Szeged) 27 (1966), 233–246. MR 209857
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Shôichirô Sakai, On the central decomposition for positive functionals on $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 118 (1965), 406–419. MR 179640, DOI 10.1090/S0002-9947-1965-0179640-7
- Erling Størmer, Large groups of automorphisms of $C^{\ast }$-algebras, Comm. Math. Phys. 5 (1967), 1–22. MR 226422
- Erling Størmer, Symmetric states of infinite tensor products of $C^{\ast }$-algebras, J. Functional Analysis 3 (1969), 48–68. MR 0241992, DOI 10.1016/0022-1236(69)90050-0
- Masamichi Takesaki, Covariant representations of $C^{\ast }$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273–303. MR 225179, DOI 10.1007/BF02392085 —, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Math., no. 128, Springer-Verlag, Berlin and New York, 1970.
- Jun Tomiyama, A characterization of $C^{\ast }$-algebras whose conjugate spaces are separable, Tohoku Math. J. (2) 15 (1963), 96–102. MR 146683, DOI 10.2748/tmj/1178243872
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 503-512
- MSC: Primary 46.65
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281013-6
- MathSciNet review: 0281013