Prime ideals in a large class of nonassociative rings
HTML articles powered by AMS MathViewer
- by Paul J. Zwier PDF
- Trans. Amer. Math. Soc. 158 (1971), 257-271 Request permission
Abstract:
In this paper a definition is given for a prime ideal in an arbitrary nonassociative ring $N$ under the single restriction that for a given positive integer $s \geqq 2$, if $A$ is an ideal in $N$, then ${A^s}$ is also an ideal. ($N$ is called an $s$-naring.) This definition is used in two ways. First it is used to define the prime radical of $N$ and the usual theorems ensue. Second, under the assumption that the $s$-naring $N$ has a certain property $(\alpha )$, the Levitzki radical $L(N)$ of $N$ is defined and it is proved that $L(N)$ is the intersection of those prime ideals $P$ in $N$ whose quotient rings are Levitzki semisimple. $N$ has property $(\alpha )$ if and only if for each finitely generated subring $A$ and each positive integer $m$, there is an integer $f(m)$ such that ${A^{f(m)}} \subseteq {A_m}$. (Here ${A_1} = {A^s}$ and ${A_{ m + 1}} = A_m^s$.) Furthermore, conditions are given on the identities an $s$-naring $N$ satisfies which will insure that $N$ satisfies $(\alpha )$. It is then shown that alternative rings, Jordan rings, and standard rings satisfy these conditions.References
- A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552β593. MR 27750, DOI 10.1090/S0002-9947-1948-0027750-7
- S. A. Amitsur, A general theory of radicals. II. Radicals in rings and bicategories, Amer. J. Math. 76 (1954), 100β125. MR 59256, DOI 10.2307/2372403
- Bailey Brown and Neal H. McCoy, Prime ideals in nonassociative rings, Trans. Amer. Math. Soc. 89 (1958), 245β255. MR 96713, DOI 10.1090/S0002-9947-1958-0096713-4
- Nathan Divinsky, Rings and radicals, Mathematical Expositions, No. 14, University of Toronto Press, Toronto, Ont., 1965. MR 0197489
- Jakob Levitzki, Prime ideals and the lower radical, Amer. J. Math. 73 (1951), 25β29. MR 38953, DOI 10.2307/2372156
- R. D. Schafer, Generalized standard algebras, J. Algebra 12 (1969), 386β417. MR 283035, DOI 10.1016/0021-8693(69)90039-8
- M. Slater, Alternative rings with $\textrm {d.c.c.}$ I, J. Algebra 11 (1969), 102β110. MR 233863, DOI 10.1016/0021-8693(69)90103-3
- Chester Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc. 19 (1968), 1171β1175. MR 230776, DOI 10.1090/S0002-9939-1968-0230776-X
- Chester E. Tsai, The Levitzki radical in Jordan rings, Proc. Amer. Math. Soc. 24 (1970), 119β123. MR 252465, DOI 10.1090/S0002-9939-1970-0252465-7
- Armin Thedy, Zum Wedderburnschen Zerlegungssatz, Math. Z. 113 (1970), 173β195 (German). MR 263887, DOI 10.1007/BF01110190
- K. A. Ε½evlakov, Solvability and nilpotence of Jordan rings, Algebra i Logika Sem 5 (1966), 37β58 (Russian). MR 0207786
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 257-271
- MSC: Primary 17.10
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281763-1
- MathSciNet review: 0281763