Quasiconformal mappings and Royden algebras in space
HTML articles powered by AMS MathViewer
- by Lawrence G. Lewis PDF
- Trans. Amer. Math. Soc. 158 (1971), 481-492 Request permission
Abstract:
On every open connected set $G$ in Euclidean $n$-space ${R^n}$ and for every index $p > 1$, we define the Royden $p$-algebra ${M_p}(G)$. We use results by F. W. Gehring and W. P. Ziemer to prove that two such sets $G$ and $G’$ are quasiconformally equivalent if and only if their Royden $n$-algebras are isomorphic as Banach algebras. Moreover, every such algebra isomorphism is given by composition with a quasiconformal homeomorphism between $G$ and $G’$. This generalizes a theorem by M. Nakai concerning Riemann surfaces. In case $p \ne n$, the only homeomorphisms which induce an isomorphism of the $p$-algebras are the locally bi-Lipschitz mappings, and for $1 < p < n$, every such isomorphism arises this way. Under certain restrictions on the domains, these results extend to the Sobolev space $H_p^1(G)$ and characterize those homeomorphisms which preserve the $H_p^1$ classes.References
- Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (German). MR 0159935
- F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499–519. MR 132841, DOI 10.1090/S0002-9947-1961-0132841-2
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8
- F. W. Gehring, Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J. 9 (1962), 137–150. MR 140683 —, Lipschitz mappings and the $p$-capacity of rings in $n$-space, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R. I., 1971.
- F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1–70. MR 180674, DOI 10.1007/BF02391817
- L. V. KantoroviÄŤ and G. P. Akilov, Funktsional′nyÄ analiz v normirovannykh prostranstvakh, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (Russian). MR 0119071
- Charles Loewner, On the conformal capacity in space, J. Math. Mech. 8 (1959), 411–414. MR 0104785, DOI 10.1512/iumj.1959.8.58029
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383
- Mitsuru Nakai, Algebraic criterion on quasiconformal equivalence of Riemann surfaces, Nagoya Math. J. 16 (1960), 157–184. MR 110801
- Mitsuru Nakai, Some topological properties on Royden’s compactification of a Riemann surface, Proc. Japan Acad. 36 (1960), 555–559. MR 123702
- H. M. Reimann, Über harmonische Kapazität und quasikonforme Abbildungen im Raum, Comment. Math. Helv. 44 (1969), 284–307 (German). MR 252637
- H. L. Royden, On the ideal boundary of a Riemann surface, Contributions to the theory of Riemann surfaces, Annals of Mathematics Studies, no. 30, Princeton University Press, Princeton, N.J., 1953, pp. 107–109. MR 0056098 —, Real analysis, 2nd ed., Macmillan, New York, 1968.
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- S. L. Sobolev, Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by F. E. Browder. MR 0165337
- Jussi Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I No. 298 (1961), 36. MR 0140685
- William P. Ziemer, Change of variables for absolutely continuous functions, Duke Math. J. 36 (1969), 171–178. MR 237725
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 481-492
- MSC: Primary 30.47
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281912-5
- MathSciNet review: 0281912