## Quasiconformal mappings and Royden algebras in space

HTML articles powered by AMS MathViewer

- by Lawrence G. Lewis PDF
- Trans. Amer. Math. Soc.
**158**(1971), 481-492 Request permission

## Abstract:

On every open connected set $G$ in Euclidean $n$-space ${R^n}$ and for every index $p > 1$, we define the Royden $p$-algebra ${M_p}(G)$. We use results by F. W. Gehring and W. P. Ziemer to prove that two such sets $G$ and $Gâ€™$ are quasiconformally equivalent if and only if their Royden $n$-algebras are isomorphic as Banach algebras. Moreover, every such algebra isomorphism is given by composition with a quasiconformal homeomorphism between $G$ and $Gâ€™$. This generalizes a theorem by M. Nakai concerning Riemann surfaces. In case $p \ne n$, the only homeomorphisms which induce an isomorphism of the $p$-algebras are the locally bi-Lipschitz mappings, and for $1 < p < n$, every such isomorphism arises this way. Under certain restrictions on the domains, these results extend to the Sobolev space $H_p^1(G)$ and characterize those homeomorphisms which preserve the $H_p^1$ classes.## References

- Corneliu Constantinescu and Aurel Cornea,
*Ideale RĂ¤nder Riemannscher FlĂ¤chen*, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 32, Springer-Verlag, Berlin-GĂ¶ttingen-Heidelberg, 1963 (German). MR**0159935** - F. W. Gehring,
*Symmetrization of rings in space*, Trans. Amer. Math. Soc.**101**(1961), 499â€“519. MR**132841**, DOI 10.1090/S0002-9947-1961-0132841-2 - F. W. Gehring,
*Rings and quasiconformal mappings in space*, Trans. Amer. Math. Soc.**103**(1962), 353â€“393. MR**139735**, DOI 10.1090/S0002-9947-1962-0139735-8 - F. W. Gehring,
*Extremal length definitions for the conformal capacity of rings in space*, Michigan Math. J.**9**(1962), 137â€“150. MR**140683**
â€”, - F. W. Gehring and J. VĂ¤isĂ¤lĂ¤,
*The coefficients of quasiconformality of domains in space*, Acta Math.**114**(1965), 1â€“70. MR**180674**, DOI 10.1007/BF02391817 - L. V. KantoroviÄŤ and G. P. Akilov,
*Funktsionalâ€˛nyÄ analiz v normirovannykh prostranstvakh*, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (Russian). MR**0119071** - Charles Loewner,
*On the conformal capacity in space*, J. Math. Mech.**8**(1959), 411â€“414. MR**0104785**, DOI 10.1512/iumj.1959.8.58029 - Lynn H. Loomis,
*An introduction to abstract harmonic analysis*, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR**0054173** - Charles B. Morrey Jr.,
*Multiple integrals in the calculus of variations*, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR**0202511** - G. D. Mostow,
*Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms*, Inst. Hautes Ă‰tudes Sci. Publ. Math.**34**(1968), 53â€“104. MR**236383** - Mitsuru Nakai,
*Algebraic criterion on quasiconformal equivalence of Riemann surfaces*, Nagoya Math. J.**16**(1960), 157â€“184. MR**110801** - Mitsuru Nakai,
*Some topological properties on Roydenâ€™s compactification of a Riemann surface*, Proc. Japan Acad.**36**(1960), 555â€“559. MR**123702** - H. M. Reimann,
*Ăśber harmonische KapazitĂ¤t und quasikonforme Abbildungen im Raum*, Comment. Math. Helv.**44**(1969), 284â€“307 (German). MR**252637** - H. L. Royden,
*On the ideal boundary of a Riemann surface*, Contributions to the theory of Riemann surfaces, Annals of Mathematics Studies, no. 30, Princeton University Press, Princeton, N.J., 1953, pp.Â 107â€“109. MR**0056098**
â€”, - StanisĹ‚aw Saks,
*Theory of the integral*, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR**0167578** - S. L. Sobolev,
*Applications of functional analysis in mathematical physics*, Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by F. E. Browder. MR**0165337** - Jussi VĂ¤isĂ¤lĂ¤,
*On quasiconformal mappings in space*, Ann. Acad. Sci. Fenn. Ser. A I No.**298**(1961), 36. MR**0140685** - William P. Ziemer,
*Change of variables for absolutely continuous functions*, Duke Math. J.**36**(1969), 171â€“178. MR**237725**

*Lipschitz mappings and the $p$-capacity of rings in $n$-space*, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R. I., 1971.

*Real analysis*, 2nd ed., Macmillan, New York, 1968.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**158**(1971), 481-492 - MSC: Primary 30.47
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281912-5
- MathSciNet review: 0281912