Some analytic varieties in the polydisc and the Müntz-Szasz problem in several variables
HTML articles powered by AMS MathViewer
- by Simon Hellerstein
- Trans. Amer. Math. Soc. 158 (1971), 285-292
- DOI: https://doi.org/10.1090/S0002-9947-1971-0285724-8
- PDF | Request permission
Abstract:
For $1 \leqq {p_1} < {p_2} < \infty$ and $n \geqq 2$ it is shown that there exists a sequence of monomials $\{ \prod _{j = 1}^nS_j^\lambda mj\}$ with ${\lambda _{mj}} \sim m$ for each $j = 1, \ldots ,n$ whose linear span is dense in ${L^{{p_1}}}({I^n})$ but not in ${L^{{p_2}}}({I^n})$ (${I^n}$ is the Cartesian product of $n$ copies of the closed unit interval $[0, 1]$). Construction of the examples is via duality, making use of suitable analytic varieties in the polydisc.References
- Jacob Korevaar and Simon Hellerstein, Discrete sets of uniqueness for bounded holomorphic functions $f(z,\,w)$, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 273–284. MR 0235150
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Laurent Schwartz, Étude des sommes d’exponentielles. 2ième éd, Publications de l’Institut de Mathématique de l’Université de Strasbourg, V. Actualités Sci. Ind., Hermann, Paris, 1959 (French). MR 0106383
- Wladimir Seidel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc. 36 (1934), no. 1, 201–226. MR 1501738, DOI 10.1090/S0002-9947-1934-1501738-9
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 285-292
- MSC: Primary 32.44
- DOI: https://doi.org/10.1090/S0002-9947-1971-0285724-8
- MathSciNet review: 0285724