Inductive definitions and computability
HTML articles powered by AMS MathViewer
- by Thomas J. Grilliot PDF
- Trans. Amer. Math. Soc. 158 (1971), 309-317 Request permission
Abstract:
Sets inductively defined with respect to ${\prod _0},{\Sigma _1}$, (nonmonotonic) ${\prod _1}$ and ${\Sigma _2}$ predicates are characterized in terms of the four chief notions of abstract recursion.References
- K. J. Barwise, R. O. Gandy, and Y. N. Moschovakis, The next admissible set, J. Symbolic Logic 36 (1971), 108–120. MR 300876, DOI 10.2307/2271519 R. Fraïssé, Une notion de récursivité relative, Proc. Sympos. Infinitistic Methods, Foundations of Math. (Warsaw, 1959), Pergamon Press, Oxford; PWN, Warsaw, 1961, pp. 323-328. MR 32 #3999. C. E. Gordon, A comparison of abstract computability theories, J. Symbolic Logic 34 (1969), 156.
- Thomas J. Grilliot, Selection functions for recursive functionals, Notre Dame J. Formal Logic 10 (1969), 225–234. MR 265152
- Daniel Lacombe, Deux généralisations de la notion de récursivité relative, C. R. Acad. Sci. Paris 258 (1964), 3410–3413 (French). MR 160719
- R. Montague, Recursion theory as a branch of model theory, Logic, Methodology and Philos. Sci. III (Proc. Third Internat. Congr., Amsterdam, 1967) North-Holland, Amsterdam, 1968, pp. 63–86. MR 0272624
- Yiannis N. Moschovakis, Abstract first order computability. I, II, Trans. Amer. Math. Soc. 138 (1969), 427–464. MR 244045, DOI 10.1090/S0002-9947-1969-0244045-0
- Yiannis N. Moschovakis, Abstract computability and invariant definability, J. Symbolic Logic 34 (1969), 605–633. MR 270908, DOI 10.2307/2270854
- Yiannis N. Moschovakis, The Suslin-Kleene theorem for countable structures, Duke Math. J. 37 (1970), 341–352. MR 272628
- Wayne Richter, Recursively Mahlo ordinals and inductive definitions, Logic Colloquium ’69 (Proc. Summer School and Colloq., Manchester, 1969) North-Holland, Amsterdam, 1971, pp. 273–288. MR 0281616
- C. Spector, Inductively defined sets of natural numbers, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 97–102. MR 0141593
Additional Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 158 (1971), 309-317
- MSC: Primary 02E15
- DOI: https://doi.org/10.1090/S0002-9947-1971-0304141-5
- MathSciNet review: 0304141