## Inductive definitions and computability

HTML articles powered by AMS MathViewer

- by Thomas J. Grilliot PDF
- Trans. Amer. Math. Soc.
**158**(1971), 309-317 Request permission

## Abstract:

Sets inductively defined with respect to ${\prod _0},{\Sigma _1}$, (nonmonotonic) ${\prod _1}$ and ${\Sigma _2}$ predicates are characterized in terms of the four chief notions of abstract recursion.## References

- K. J. Barwise, R. O. Gandy, and Y. N. Moschovakis,
*The next admissible set*, J. Symbolic Logic**36**(1971), 108–120. MR**300876**, DOI 10.2307/2271519
R. Fraïssé, - Thomas J. Grilliot,
*Selection functions for recursive functionals*, Notre Dame J. Formal Logic**10**(1969), 225–234. MR**265152** - Daniel Lacombe,
*Deux généralisations de la notion de récursivité relative*, C. R. Acad. Sci. Paris**258**(1964), 3410–3413 (French). MR**160719** - R. Montague,
*Recursion theory as a branch of model theory*, Logic, Methodology and Philos. Sci. III (Proc. Third Internat. Congr., Amsterdam, 1967) North-Holland, Amsterdam, 1968, pp. 63–86. MR**0272624** - Yiannis N. Moschovakis,
*Abstract first order computability. I, II*, Trans. Amer. Math. Soc.**138**(1969), 427–464. MR**244045**, DOI 10.1090/S0002-9947-1969-0244045-0 - Yiannis N. Moschovakis,
*Abstract computability and invariant definability*, J. Symbolic Logic**34**(1969), 605–633. MR**270908**, DOI 10.2307/2270854 - Yiannis N. Moschovakis,
*The Suslin-Kleene theorem for countable structures*, Duke Math. J.**37**(1970), 341–352. MR**272628** - Wayne Richter,
*Recursively Mahlo ordinals and inductive definitions*, Logic Colloquium ’69 (Proc. Summer School and Colloq., Manchester, 1969) North-Holland, Amsterdam, 1971, pp. 273–288. MR**0281616** - C. Spector,
*Inductively defined sets of natural numbers*, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 97–102. MR**0141593**

*Une notion de récursivité relative*, Proc. Sympos. Infinitistic Methods, Foundations of Math. (Warsaw, 1959), Pergamon Press, Oxford; PWN, Warsaw, 1961, pp. 323-328. MR

**32**#3999. C. E. Gordon,

*A comparison of abstract computability theories*, J. Symbolic Logic

**34**(1969), 156.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**158**(1971), 309-317 - MSC: Primary 02E15
- DOI: https://doi.org/10.1090/S0002-9947-1971-0304141-5
- MathSciNet review: 0304141