Value distribution of harmonic polynomials in several real variables.
HTML articles powered by AMS MathViewer
- by Morris Marden
- Trans. Amer. Math. Soc. 159 (1971), 137-154
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279323-1
- PDF | Request permission
Abstract:
Using Bergman’s integral operator method, the author studies an arbitrary axisymmetric harmonic polynomial $H(x,\rho )$ in ${R^3}$ and ${R^N}$ in relation to its associate polynomial $h(\zeta )$ in $C$. His results pertain to the value distributions and critical circles of $H(x,\rho )$ in certain cones; bounds on the gradient of an $H(x,\rho )$ assumed bounded in sphere ${x^2} + {\rho ^2} \leqq 1$; axisymmetric harmonic vectors. Corresponding results are also obtained for axisymmetric harmonic functions $F(x,\rho )$ with rational associate $f(\zeta )$.References
- Stefan Bergman, Integral operators in the theory of linear partial differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 23, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0141880, DOI 10.1007/978-3-642-64985-1
- Robert P. Gilbert, Function theoretic methods in partial differential equations, Mathematics in Science and Engineering, Vol. 54, Academic Press, New York-London, 1969. MR 0241789
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR 0225972 Serge Bernstein, Leçons sur propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle, Gauthier-Villars, Paris, 1926.
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
- Oliver Dimon Kellogg, Foundations of potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 31, Springer-Verlag, Berlin-New York, 1967. Reprint from the first edition of 1929. MR 0222317, DOI 10.1007/978-3-642-86748-4
- Morris Marden, Axisymmetric harmonic vectors, Amer. J. Math. 67 (1945), 109–122. MR 13982, DOI 10.2307/2371920
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 159 (1971), 137-154
- MSC: Primary 31.11
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279323-1
- MathSciNet review: 0279323