Representation of vector valued nonlinear functions
HTML articles powered by AMS MathViewer
- by Victor J. Mizel and K. Sundaresan
- Trans. Amer. Math. Soc. 159 (1971), 111-127
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279647-8
- PDF | Request permission
Abstract:
A representation theorem for “additive” nonlinear functional on spaces ${L^p}(\mu )$ is here extended to “additive” nonlinear functions from Lebesgue-Bochner function spaces $L_E^p(\mu )$ ($E$ a separable Banach space) into Banach spaces $B$. A counterexample is provided to show that the restriction to separable $E$ is essential.References
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- L. Drewnowski and W. Orlicz, On orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 883–888 (English, with Russian summary). MR 244755
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
- M. A. Krasnosel′skiĭ, Topologicheskie metody v teoriĭ nelineĭnykh integral′nykh uravneniĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). MR 0096983
- Victor J. Mizel, Characterization of non-linear transformations possessing kernels, Canadian J. Math. 22 (1970), 449–471. MR 262890, DOI 10.4153/CJM-1970-053-3
- V. J. Mizel and K. Sundaresan, Representation of additive and biadditive functionals, Arch. Rational Mech. Anal. 30 (1968), 102–126. MR 227757, DOI 10.1007/BF00250940
- B. J. Pettis, Differentiation in Banach spaces, Duke Math. J. 5 (1939), no. 2, 254–269. MR 1546122, DOI 10.1215/S0012-7094-39-00523-5
- R. S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114–145. MR 2707, DOI 10.1090/S0002-9947-1940-0002707-3
- M. A. Rieffel, The Radon-Nikodym theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466–487. MR 222245, DOI 10.1090/S0002-9947-1968-0222245-2
- Wojbor A. Woyczyński, Additive functionals on Orlicz spaces, Colloq. Math. 19 (1968), 319–326. MR 230123, DOI 10.4064/cm-19-2-319-326 V. J. Mizel and K. Sundaresan, Characterization of nonlinear vector valued functions, Report 69-30, Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pa., 1969.
- Jean Dieudonné, Sur le théorème de Lebesgue-Nikodym. III, Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 23 (1948), 25–53 (French). MR 0028924
- Jean Dieudonné, Sur le théorème de Lebesgue-Nikodym. V, Canad. J. Math. 3 (1951), 129–139 (French). MR 44611, DOI 10.4153/cjm-1951-015-9
- Jacques Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964 (French). MR 0198504
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 159 (1971), 111-127
- MSC: Primary 47.80; Secondary 28.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279647-8
- MathSciNet review: 0279647