On zonotopes
HTML articles powered by AMS MathViewer
- by P. McMullen
- Trans. Amer. Math. Soc. 159 (1971), 91-109
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279689-2
- PDF | Request permission
Abstract:
In this paper is described a diagram technique for zonotopes, or vector sums of line segments, which is analogous to that of Gale diagrams for general polytopes, and central diagrams for centrally symmetric polytopes. The use of these new zonal diagrams leads to relationships between zonotopes with $n$ zones of dimensions $d$ and $n - d$, and enables one to enumerate all the combinatorial types of $d$-zonotopes with $n \leqq d + 2$ zones. The connexion between arrangements of hyperplanes in projective space and zonotopes leads to corresponding new results about arrangements.References
- E. Bonnice and L. M. Kelly, On the number of ordinary planes, J. Combinatorial Theory (to appear).
- H. S. M. Coxeter, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. (9) 41 (1962), 137–156. MR 141004
- G. A. Dirac, Collinearity properties of sets of points, Quart. J. Math. Oxford Ser. (2) 2 (1951), 221–227. MR 43485, DOI 10.1093/qmath/2.1.221
- P. Erdos, Richard Bellman, H. S. Wall, James Singer, and V. Thébault, Problems and Solutions: Advanced Problems: Problems for Solution: 4065-4069, Amer. Math. Monthly 50 (1943), no. 1, 65–66. MR 1543984, DOI 10.2307/2304011
- David Gale, Neighboring vertices on a convex polyhedron, Linear inequalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N.J., 1956, pp. 255–263. MR 0085552 Grünbaum, Convex polytopes, Pure and Appl. Math., vol. 16, Interscience, New York, 1967. MR 37 #2085.
- Sten Hansen, A generalization of a theorem of Sylvester on the lines determined by a finite point set, Math. Scand. 16 (1965), 175–180. MR 203561, DOI 10.7146/math.scand.a-10758
- L. M. Kelly and W. O. J. Moser, On the number of ordinary lines determined by $n$ points, Canadian J. Math. 10 (1958), 210–219. MR 97014, DOI 10.4153/CJM-1958-024-6
- P. McMullen, Linearly stable polytopes, Canadian J. Math. 21 (1969), 1427–1431. MR 253149, DOI 10.4153/CJM-1969-157-4
- P. McMullen and G. C. Shephard, Diagrams for centrally symmetric polytopes, Mathematika 15 (1968), 123–138. MR 238180, DOI 10.1112/S0025579300002473 —, Convex polytopes and the upper-bound conjecture, London Math. Soc. Lecture Note Series, vol. 3, 1971.
- Th. Motzkin, The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc. 70 (1951), 451–464. MR 41447, DOI 10.1090/S0002-9947-1951-0041447-9 Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145-254, 217, 232.
- G. C. Shephard, Diagrams for positive bases, J. London Math. Soc. (2) 4 (1971), 165–175. MR 295209, DOI 10.1112/jlms/s2-4.1.165 Steinitz, Bedingt konvergente Reihen und konvexe Systeme. II, J. Reine Angew. Math. 144 (1914), 1-40. FM 44, 287. J. Sylvester, Mathematical question 11851, Ed. Times 59 (1893), 98.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 159 (1971), 91-109
- MSC: Primary 52.10; Secondary 05.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0279689-2
- MathSciNet review: 0279689