Generally $p^{\alpha }$-torsion complete abelian groups
HTML articles powered by AMS MathViewer
- by Paul F. Dubois
- Trans. Amer. Math. Soc. 159 (1971), 245-255
- DOI: https://doi.org/10.1090/S0002-9947-1971-0280585-5
- PDF | Request permission
Abstract:
A generalized $p$-primary cotorsion abelian group $G$ is a ${p^\alpha }$-injective, that is satisfies ${p^\alpha }\operatorname {Ext} ( - ,G) = 0$, iff ${G_t}$ is ${p^\alpha }$-injective in the category of torsion abelian groups. Such a torsion group is generally ${p^\alpha }$-torsion complete, but an example shows that all its Ulm factors need not be complete. The injective properties of generally ${p^\alpha }$-torsion complete groups are investigated. They are an injectively closed class, and the corresponding class of sequences is the class of ${p^\alpha }$-pure sequences with split com-c pletion when $\alpha$ is βaccessible". Also, these groups are the ${p^\alpha }$-high injectives.References
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Doyle O. Cutler, On the structure of primary abelian groups of countable Ulm type, Trans. Amer. Math. Soc. 152 (1970), 503β518. MR 276330, DOI 10.1090/S0002-9947-1970-0276330-9
- L. Fuchs, Abelian groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0111783 β, Infinite abelian groups, Academic Press, New York, 1970.
- D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366β391. MR 104728, DOI 10.2307/1970188
- D. K. Harrison, On the structure of $\textrm {Ext}$, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp.Β 195β209. MR 0242926
- Paul Hill, Isotype subgroups of direct sums of countable groups, Illinois J. Math. 13 (1969), 281β290. MR 240198
- Paul Hill and Charles Megibben, On direct sums of countable groups and generalizations, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp.Β 183β206. MR 0242943
- John M. Irwin and Elbert A. Walker, On $N$-high subgroups of Abelian groups, Pacific J. Math. 11 (1961), 1363β1374. MR 136653, DOI 10.2140/pjm.1961.11.1363
- John M. Irwin and Elbert A. Walker, On $N$-high subgroups of Abelian groups, Pacific J. Math. 11 (1961), 1363β1374. MR 136653, DOI 10.2140/pjm.1961.11.1363
- John M. Irwin, Carol L. Walker, and Elbert A. Walker, On $p^{\alpha }$-pure sequences of Abelian groups, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp.Β 69β119. MR 0199261
- Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
- J.-M. Maranda, Injective structures, Trans. Amer. Math. Soc. 110 (1964), 98β135. MR 163937, DOI 10.1090/S0002-9947-1964-0163937-X
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-GΓΆttingen-Heidelberg, 1963. MR 0156879, DOI 10.1007/978-3-642-62029-4
- Ray Mines, A family of functors defined on generalized primary groups, Pacific J. Math. 26 (1968), 349β360. MR 238958, DOI 10.2140/pjm.1968.26.349
- Ray Mines, Torsion and cotorsion completions, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp.Β 301β303. MR 0242947
- R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182β212. MR 218452, DOI 10.1007/BF01135839 β, Purity, Notices Amer. Math. Soc. 8 (1961), 562. Abstract #584-14.
- R. J. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp.Β 121β171. MR 0169913 F. Richman, C. L. Walker and E. A. Walker, Projective classes of Abelian groups (to appear).
- Daniel Zelinsky, Rings with ideal nuclei, Duke Math. J. 18 (1951), 431β442. MR 41107
- Charles Megibben, On $p^{\alpha }$-high injectives, Math. Z. 122 (1971), 104β110. MR 299678, DOI 10.1007/BF01110084
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 159 (1971), 245-255
- MSC: Primary 20.30
- DOI: https://doi.org/10.1090/S0002-9947-1971-0280585-5
- MathSciNet review: 0280585