Ramsey’s theorem for $n$-parameter sets
HTML articles powered by AMS MathViewer
- by R. L. Graham and B. L. Rothschild
- Trans. Amer. Math. Soc. 159 (1971), 257-292
- DOI: https://doi.org/10.1090/S0002-9947-1971-0284352-8
- PDF | Request permission
Abstract:
Classes of objects called $n$-parameter sets are defined. A Ramsey theorem is proved to the effect that any partitioning into $r$ classes of the $k$-parameter subsets of any sufficiently large $n$-parameter set must result in some $l$-parameter subset with all its $k$-parameter subsets in one class. Among the immediate corollaries are the lower dimensional cases of a Ramsey theorem for finite vector spaces (a conjecture of Rota), the theorem of van der Waerden on arithmetic progressions, a set theoretic generalization of a theorem of Schur, and Ramsey’s Theorem itself.References
- J. Folkman (personal communication).
- Jay Goldman and Gian-Carlo Rota, On the foundations of combinatorial theory. IV. Finite vector spaces and Eulerian generating functions, Studies in Appl. Math. 49 (1970), 239–258. MR 265181, DOI 10.1002/sapm1970493239 R. L. Graham and B. L. Rothschild, Rota’s geometric analogue to Ramsey’s theorem, Proc. Sympos. Pure Math., vol. 19, Amer. Math. Soc., Providence, R. I., 1971, pp. 101-104.
- R. L. Graham and B. L. Rothschild, Ramsey’s theorem for $n$-dimensional arrays, Bull. Amer. Math. Soc. 75 (1969), 418–422. MR 237349, DOI 10.1090/S0002-9904-1969-12202-0
- A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222–229. MR 143712, DOI 10.1090/S0002-9947-1963-0143712-1
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- A. Y. Khinchin, Three pearls of number theory, Graylock Press, Rochester, N.Y., 1952. MR 0046372
- R. Rado, Note on combinatorial analysis, Proc. London Math. Soc. (2) 48 (1943), 122–160. MR 9007, DOI 10.1112/plms/s2-48.1.122
- R. Rado, Some partition theorems, Combinatorial theory and its applications, I-III (Proc. Colloq., Balatonfüred, 1969) North-Holland, Amsterdam, 1970, pp. 929–936. MR 0297585 F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286. B. L. Rothschild, A generalization of Ramsey’s Theorem and a conjecture of Rota, Doctoral Dissertation, Yale University, New Haven, Conn., 1967.
- Herbert John Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. 14, Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1963. MR 0150048, DOI 10.5948/UPO9781614440147 J. Sanders, A generalization of a theorem of Schur, Doctoral Dissertation, Yale University, New Haven, Conn., 1968. I. Schur, Über die Kongruenz ${x^m} + {y^m} \equiv {z^m}\pmod p$, Jber. Deutsch. Math.-Verein. 25 (1916), 114. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212-216.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 159 (1971), 257-292
- MSC: Primary 05.04
- DOI: https://doi.org/10.1090/S0002-9947-1971-0284352-8
- MathSciNet review: 0284352