Interpolation theorems for the pairs of spaces $(L^{p}, L^{\infty })$ and $(L^{1}, L^{q})$
HTML articles powered by AMS MathViewer
- by George G. Lorentz and Tetsuya Shimogaki
- Trans. Amer. Math. Soc. 159 (1971), 207-221
- DOI: https://doi.org/10.1090/S0002-9947-1971-0380447-9
- PDF | Request permission
Abstract:
A Banach space $Z$ has the interpolation property with respect to the pair $(X,Y)$ if each $T$, which is a bounded linear operator from $X$ to $X$ and from $Y$ to $Y$, can be extended to a bounded linear operator from $Z$ to $Z$. If $X = {L^p},Y = {L^\infty }$ we give a necessary and sufficient condition for a Banach function space $Z$ on $(0,l),0 < l \leqq + \infty$, to have this property. The condition is that $g \prec {}^pf$ and $f \in Z$ should imply $g \in Z$; here $g \prec {}^pf$ means that ${g^{ \ast p}} \prec {f^{ \ast p}}$ in the Hardy-Littlewood-Pólya sense, while ${h^ \ast }$ denotes the decreasing rearrangement of the function $|h|$. If the norms $||T|{|_X},||T|{|_Y}$ are given, we can estimate $||T|{|_Z}$. However, there is a gap between the necessary and the sufficient conditions, consisting of an unknown factor not exceeding ${\lambda _p},{\lambda _p} \leqq {2^{1/q}},1/p + 1/q = 1$. Similar results hold if $X = {L^1},Y = {L^q}$. For all these theorems, the complete continuity of $T$ on $Z$ is assured if $T$ has this property on $X$ or on $Y$, and if $Z$ satisfies a certain additional necessary and sufficient condition, expressed in terms of $||{\sigma _a}|{|_Z},a > 0$, where ${\sigma _a}$ is the compression operator ${\sigma _a}f(t) = f(at),0 \leqq t < l$.References
- D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canadian J. Math. 19 (1967), 599–616. MR 212512, DOI 10.4153/CJM-1967-053-7
- A.-P. Calderón, Spaces between $L^{1}$ and $L^{\infty }$ and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273–299. MR 203444, DOI 10.4064/sm-26-3-301-304 G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1934.
- M. A. Krasnosel′skiĭ, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229–231. MR 0119086
- M. A. Krasnosel′skiĭ, P. P. Zabreĭko, E. I. Pustyl′nik, and P. E. Sobolevskiĭ, Integral′nye operatory v prostranstvakh summiruemykh funktsiĭ, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0206751
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- S. G. Kreĭn and Ju. I. Petunin, Scales of Banach spaces, Uspehi Mat. Nauk 21 (1966), no. 2 (128), 89–168 (Russian). MR 0193499
- G. G. Lorentz, Bernstein polynomials, Mathematical Expositions, No. 8, University of Toronto Press, Toronto, 1953. MR 0057370
- G. G. Lorentz, On the theory of spaces $\Lambda$, Pacific J. Math. 1 (1951), 411–429. MR 44740, DOI 10.2140/pjm.1951.1.411
- G. G. Lorentz and T. Shimogaki, Interpolation theorems for operators in function spaces, J. Functional Analysis 2 (1968), 31–51. MR 0257775, DOI 10.1016/0022-1236(68)90024-4
- G. G. Lorentz and T. Shimogaki, Majorants for interpolation theorems, Publ. Ramanujan Inst. 1 (1968/69), 115–122. MR 275197 W. A. J. Luxemburg, Rearrangement invariant Banach function spaces, Proc. Sympos. Analysis, Queen’s Univ. 10 (1967), 83-144.
- W. Orlicz, On a class of operations over the space of integrable functions, Studia Math. 14 (1954), 302–209 (1955). MR 68125, DOI 10.4064/sm-14-2-302-309
- Tetsuya Shimogaki, On the complete continuity of operators in an interpolation theorem. , J. Fac. Sci. Hokkaido Univ. Ser. I 20 (1968), 109–114. MR 0240665
- Tetsuya Shimogaki, An interpolation theorem on Banach function spaces, Studia Math. 31 (1968), 233–240. MR 234301, DOI 10.4064/sm-31-3-233-240
- Tetsuya Shimogaki, On an equivalence relation on semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. Ser. I 18 (1964), 41–55. MR 0174959
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 159 (1971), 207-221
- MSC: Primary 46M35; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9947-1971-0380447-9
- MathSciNet review: 0380447