INTERPOLATION THEOREMS FOR THE PAIRS OF SPACES \((L^p, L^\infty)\) AND \((L^1, L^q)\)

BY GEORGE G. LORENTZ AND TETSUYA SHIMOGAKI

Abstract. A Banach space \(Z\) has the interpolation property with respect to the pair \((X, Y)\) if each \(T\), which is a bounded linear operator from \(X\) to \(X\) and from \(Y\) to \(Y\), can be extended to a bounded linear operator from \(Z\) to \(Z\). If \(X=L^p, Y=L^\infty\) we give a necessary and sufficient condition for a Banach function space \(Z\) on \((0, I)\), \(0<\lambda \leq +\infty\), to have this property. The condition is that \(g \prec \ast f\) and \(f \in Z\) should imply \(g \in Z\); here \(g \prec \ast f\) means that \(g \prec \ast f \prec \ast \infty\) in the Hardy-Littlewood-Pólya sense, while \(h^*\) denotes the decreasing rearrangement of the function \(|h|\).

If the norms \(\|T\|_X, \|T\|_Y\) are given, we can estimate \(\|T\|_Z\). However, there is a gap between the necessary and the sufficient conditions, consisting of an unknown factor not exceeding \(h_\lambda, h_\lambda \leq 2^{1/\lambda}, 1/p + 1/q = 1\).

Similar results hold if \(X=L^1, Y=L^q\). For all these theorems, the complete continuity of \(T\) on \(Z\) is assured if \(T\) has this property on \(X\) or on \(Y\), and if \(Z\) satisfies a certain additional necessary and sufficient condition, expressed in terms of \(\|\sigma_\alpha\|_Z, \alpha > 0\), where \(\sigma_\alpha\) is the compression operator \(\sigma_\alpha f(t) = f(at), 0 \leq t < 1\).

1. Introduction. Let \(X, Y\) and \(Z\) be Banach spaces, and let \(\mathcal{B}(X)\) denote the totality of bounded linear operators acting on \(X\), let \(\mathcal{B}(X, Y) = \mathcal{B}(X) \cap \mathcal{B}(Y)\). Also, let \(\mathcal{B}(X, Y; K_1, K_2)\) denote the set of all operators in \(\mathcal{B}(X, Y)\) satisfying \(\|T\|_X \leq K_1\) and \(\|T\|_Y \leq K_2\). The space \(Z\) is said to have the interpolation property for the pair \((X, Y)\), if for every \(T \in \mathcal{B}(X, Y)\), \(T\) (or its unique extension \(\hat{T}\) to \(Z\)) belongs to \(\mathcal{B}(Z)\).

The space \(Z\) has the interpolation property for the pair \((X, Y)\) in the strong sense, if \(T\) has the interpolation property for \((X, Y)\) and if \(\|\|T\|_Z\|\) (or \(\|\|\hat{T}\|_Z\|\)) is majorized by a positive constant depending only on \(\|T\|_X\) and \(\|T\|_Y\). In the sequel, \(I = (0, I)\) will be a (finite or infinite) interval of the real line, and \((X, \|\cdot\|_X)\) will be a Banach function space of locally Lebesgue integrable functions on \(I\) satisfying the following conditions:

(1.1) \(\|g\| \leq \|f\|, f \in X\) implies \(g \in X\) and \(\|g\|_X \leq \|f\|_X\);
(1.2) The norm \(\|\cdot\|_X\) is semicontinuous:

\[0 \leq f_n \uparrow f, \alpha = \sup_{n \geq 1} \|f_n\|_X < \infty \text{ imply } f = \bigcup_{n=1}^\infty f_n \in X \text{ and } \|f\|_X = \alpha.\]
For a positive measurable function f, $d_f(y) = m[t : f(t) > y]$, $y \geq 0$, is the distribution function of f. Two positive functions f, g are equimeasurable, $f \sim g$, if they have the same distribution function. The space X is called weakly rearrangement invariant (rearrangement invariant), if $0 \leq f \in X$ and $f \sim g$ imply $g \in X$ (resp. $\|g\|_X \leq \gamma \|f\|_X$, where γ is a fixed constant independent upon f and g). We write L^p for $L^p(I)$, $1 \leq p \leq \infty$, and $\| \cdot \|_p$ for the L^p-norm on I. In his paper [2] A. P. Calderón showed that X has the interpolation property for the pair (L^1, L^∞) if and only if X is rearrangement invariant. In §3 and §4 we shall study the interpolation property for the pairs (L^p, L^{∞}), $1 \leq p < \infty$, and (L^1, L^q), $1 < q < \infty$, respectively. We characterize the Banach function spaces having the interpolation property for these pairs (Theorems 2 and 3), extending the results of [2], [11]. In §5 the complete continuity of operators acting on interpolated spaces will be dealt with. Results similar to those of [14] will be obtained, and a special case when X is an Orlicz space will be discussed in the last section.

Let X and Y be Banach function spaces consisting of locally integrable functions. By $X + Y$ we denote the set of all functions f of the form $f = f_1 + f_2$, where $f_1 \in X$ and $f_2 \in Y$. If $Z \subseteq X + Y$, then each operator $T \in \mathfrak{B}(X, Y)$ has a natural extension onto Z. For $f \in Z$, we write $f = f_1 + f_2$, and define $Tf = Tf_1 + Tf_2$. Since T is linear, the value of Tf does not depend on the choice of f_1 and f_2. An extension of T in this sense will be again denoted by T. 2. Quasi-orders. For a measurable function f on $I(0,1)$, f^* will denote the decreasing rearrangement of $|f|$, that is, the inverse function of $d_f(y)$, whenever it is finite. By S we denote the set of all positive simple functions, vanishing outside of a set of finite measure. It is easy to see that f^* is defined if f is locally integrable.

The main tool of this paper is different quasi-order relations between measurable functions f, g. One of them is the Hardy-Littlewood-Pólya relation $g < f$ for locally integrable f, g, which means that

$$\int_0^x g^*(t) \, dt \leq \int_0^x f^*(t) \, dt, \quad x \geq 0. \tag{2.1}$$

Although this relation is classical, some new properties of it were found in [10]. Here is a further property:

THEOREM 1. Let $g_1 + g_2 < f$, all these functions being locally integrable and positive. Then there exist positive f_1, f_2 for which $f = f_1 + f_2$, $g_i < f_i$, $i = 1, 2$.

LEMMA 1. Let $g < f$, where g, f are positive and g a decreasing function in S:

$$g = \sum_{v=1}^n \alpha_v x_{(c_v - 1, c_v)}, \quad 0 = c_0 < \cdots < c_n \leq l, \quad \alpha_1 \geq \cdots \geq \alpha_n \geq 0.$$

Then there exist mutually disjoint sets $e_v, v = 1, \ldots, n$, with the following properties:

$$m e_v = c_v - c_{v-1}, \tag{2.2}$$

$$\alpha_v m e_v \leq \int f_{x_v} \, dt. \tag{2.3}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. First we assume that f is decreasing. In this case, we shall also have the following:

(2.4) Each set e_v is a finite union of intervals.

For $n=1$ the assertion holds trivially. Suppose that it holds for $n=k$. Let $n=k+1$. Putting

$$a = \sup \left\{ c : \int_0^{c+c_1} f \, dt \geq \alpha_1 c_1, c \leq c_n - c_1 \right\},$$

we have $\int_0^{c+c_1} f \, dt = \alpha_1 c_1$, unless $a = c_n - c_1$. Let $\tau_c h$ denote the translation operator, defined by

$$\tau_c h(t) = h(t+c) \quad \text{if } t+c \in I,$$

$$= 0 \quad \text{otherwise.}$$

We put

$$f_1 = (f \chi_{(0,a)} + f \chi_{(a+c_1,1)})^\ast = f \chi_{(0,a)} + \tau_{c_1} (f \chi_{(a+c_1,1)}),$$

$$g_1 = \tau_{c_1} \left(\sum_{v=2}^n \alpha_v \chi_{(c_{v-1},c_v)} \right) = \sum_{v=2}^n \alpha_v \chi_{(c_{v-1} - c_1, c_v - c_1)}.$$

We can exclude the possibility that $a = c_n - c_1$, for then $g_x(t) < f_x(t)$ for all t. Since

$$\int_0^x g_1 \, dt \leq \int_0^x f \, dt \leq \int_0^x f_1 \, dt \quad \text{if } 0 < x \leq a,$$

$$\int_0^x g_1 \, dt = \int_0^{c_1+x} g \, dt - \alpha_1 c_1 \leq \int_0^{c_1+x} f \, dt - \int_0^{c_1} f \, dt$$

$$= \int_0^x f_1 \, dt \quad \text{if } a < x \leq 1,$$

we see that $g_1 < f_1$. By the assumption, there exist mutually disjoint sets $e_v, 2 \leq v \leq k+1$, such that (2.2)–(2.4) hold for f_1 and g_1. Setting $e_1 = (a, a+c_1)$ and $e_v = (e_v \cap (0,a)) \cup \{ t : t - c_1 \in e_v \cap (a,1) \}, 2 \leq v \leq k+1$, we obtain mutually disjoint sets $e_v, 1 \leq v \leq k+1$, for which all the required conditions hold for f and g.

If f is positive but not decreasing, then, since $g < f^\ast$, we can find mutually disjoint measurable sets $e_v, 1 \leq v \leq n$, such that (2.2)–(2.4) hold for g and f^\ast. As each e_v is a finite sum of intervals, we can easily find mutually disjoint sets $e_v, 1 \leq v \leq n$, such that $m e_v = m e_v$ and $\int f \chi_{e_v} \, dt = \alpha_v m e_v$. Measurable sets $e_v, 1 \leq v \leq n$, thus obtained, satisfy the requirements of Lemma 1.

We can now prove Theorem 1 when g_1 and g_2, and consequently $g = g_1 + g_2$ belong to S. Let $e_v, v = 1, \ldots, n$, be sets of constancy of each of the three functions, with $g_1 = \alpha_{v_1}, g_2 = \alpha_{v_2}$ on e_v. By means of the decreasing rearrangement of g and Lemma 1, we find disjoint sets e_v with $m e_v = m e_v$, $\int f \chi_{e_v} \, dt \geq \alpha_{v_1} + \alpha_{v_2})m e_v$. Then it is possible to decompose each e_v into disjoint e_{v_1}, e_{v_2} such that $\int f \chi_{e_{v_1}} \, dt \geq \alpha_v m e_v, i = 1, 2$. We shall have $f \chi_{e_{v_i}} > g \chi_{e_{v_i}}, i = 1, 2, v = 1, \ldots, n$. Adding these relations, we obtain $g_1 < f = \sum_{v=1}^n f \chi_{e_v}$, $f_1 + f_2 \leq g$. It is now sufficient to replace f_2 by $f - f_1$ to obtain the result.
If \(g_1, g_2 \) are arbitrary positive functions, one finds increasing sequences \(g_{1n} \uparrow g_1, \ g_{2n} \uparrow g_2 \) from \(S \). For the corresponding \(f_{1n}, f_{2n} \) one can use weak \(*\)-compactness on each set \(A \) where \(f \) is bounded, and the absolute continuity of the integrals \(\int f \ dt \) to complete the proof.

Remark. It is not difficult to show that the functions \(f_1, f_2 \) of Theorem 1 can be always assumed to be orthogonal (that is, with disjoint supports). However, one cannot, in general, assume that they are decreasing, even if \(g_1, g_2 \) and \(f \) are decreasing step functions with just one step.

In [10] another quasi-order \(g \prec_f \) has been used. With respect to two Banach function spaces this relation means the following. One must have \(g, f \in X_1 + X_2 \), and for each decomposition \(f = f_1 + f_2, \ f_i \in X_i, \ i = 1, 2 \) of \(f \) there should exist a decomposition \(g = g_1 + g_2 \) of \(g, \ g_i \in X_i, \ i = 1, 2 \), with the property that \(\|g_i\|_{X_i} \leq \|f_i\|_{X_i}, \ i = 1, 2 \). We are interested here in the case \(X_1 = L^p, \ X_2 = L^\infty \). Then it is easy to see (compare also [10, p. 38]) that \(g \prec_f \) holds if and only if

\[
\|(g^* - y)_+\|_p \leq \|(f^* - y)_+\|_p, \ y \geq 0.
\]

The quasi-order used in this paper, \(g \prec^p f \), where \(p \geq 1 \), is defined, for two locally \(p \)-integrable functions, by the inequality

\[
\int_0^x g^{*p} \ dt \leq \int_0^x f^{*p} \ dt, \quad x \geq 0,
\]

that is, by \(g^{*p} \prec f^{*p} \). If one writes \((2.6) \) as \(\|g^* \chi_{(0,x)}\|_p \leq \|f^* \chi_{(0,x)}\|_p \), there is an obvious similarity to \((2.5) \).

From the definition we see that

\[
g \prec^p f \text{ is equivalent to } g^* \prec^p f^*,
\]

By a theorem of Hardy, Littlewood and Pólya, [3], \(g \prec^p f \) implies \(\Phi(|g|) < \Phi(|f|) \), where \(\Phi(u), \ u \geq 0 \), is convex and increasing. In particular,

\[
g \prec f \text{ implies } g \prec^p f.
\]

We also have

\[
g_i \prec^p f, \ i = 1, 2, \ a_1, a_2 \geq 0, \ a_1 + a_2 = 1 \text{ imply } a_1 g_1 + a_2 g_2 \prec^p f.
\]

In fact, for \(x \in I \) we have, because of the inequality \((f_1 + f_2)^* \prec f_1^* + f_2^* \) and \((2.8) \),

\[
\int_0^x (a_1 g_1 + a_2 g_2)^{*p} \ dt \leq \int_0^x (a_1 g_1^* + a_2 g_2^*)^p \ dt \leq a_1 \int_0^x g_1^{*p} \ dt + a_2 \int_0^x g_2^{*p} \ dt \leq \int_0^x f^{*p} \ dt.
\]

Lemma 2. (i) Relation \(g \prec^p f \) implies \(g \prec f \); (ii) for each \(p > 1 \), there is a smallest constant \(\lambda_p, \ 1 < \lambda_p \leq 2^{1/q} (1/p + 1/q = 1) \), for which \(g \prec f \) implies \(g \prec^p \lambda_p f \).
Proof. (i) For a given \(y \geq 0 \), we consider the function \(\Phi(u) = (u^{1/p} - y)^p \), which is increasing and convex. Thus, by the theorem of Hardy, Littlewood and Pólya mentioned above \(g <^p f \) implies \(\Phi(g^*) < \Phi(f^*) \); relation (2.5) follows from this.

(ii) Assume \(g < f \). If \(e_0 \subset I \) is a given set, with \(me_0 = a > 0 \), let \(\alpha = f^*(a) \), and let \(f_2 = f^{|e_0} \in L^\infty \) be the \(\alpha \)-truncation of \(f \), let \(f_1 = f - f^{|e_0} \in L^p \). There exist \(g_i, i = 1, 2, \) with \(g = g_1 + g_2, \| g_1 \|_p \leq \| f - f^{|e_0} \|_p, \| g_2 \|_\infty \leq \alpha \). Let \(e \subset I, me \leq a \). Then

\[
\| gxe \|_p \leq \| g_1 xe \|_p + \| g_2 xe \|_p \leq \| g_1 \|_p + \alpha d^{1/p} \leq \| f - f^{|e_0} \|_p + \| f^{|e_0} xe_0 \|_p \leq 2^{1/q} \| fxe_0 \|_p.
\]

We have used here the fact that if \(f_1, f_2 \geq 0, \) then \(\| f_1 \|_p + \| f_2 \|_p \leq 2^{1/q} \| f_1 + f_2 \|_p \). From (2.10) it follows that \(g <^p 2^{1/q} f \).

3. An interpolation theorem for the pair \(L^p, L^\infty \). In this section we assume that \(X \) is a Banach function space satisfying \(X \subset L^p + L^\infty \) for some \(p, 1 \leq p < +\infty \). We shall say that \(X \) is monotone with respect to the relation \(<^p \), or that \(X \) belongs to the class \(M^p \) if \(g <^p f \) and \(f \in X \) imply \(g \in X \). For \(A > 0 \), we shall say that \(X \in M^p(A) \) if \(g <^p f \) and \(f \in X \) imply \(g \in X \) and \(\| g \|_X \leq A \| f \|_X \).

Lemma 3. If \(X \in M^p \), then \(X \in M^p(A) \) for some \(A > 0 \); moreover, \(X \) is rearrangement invariant.

Proof. By (2.8) it is clear that \(X \) is weakly rearrangement invariant if \(X \in M^p \). Suppose that \(M^p(A) \) is violated for each \(A > 0 \). Then there exist positive functions \(f_n, g_n, n = 1, 2, \ldots \), such that \(g_n <^p f_n, \| g_n \|_X \geq n \) and \(\| f_n \|_X \leq 2^{-2n} \). Putting \(f = \sum_{n=1}^{\infty} 2^n f_n \), we have \(f \in X \) and \(2^n g_n <^p f, n \geq 1 \). By (2.9) we get

\[
g = \sum_{n=1}^{\infty} g_n = \sum_{n=1}^{\infty} 2^{-n} (2^n g_n) <^p f,
\]

hence \(g \in X \). This, however, contradicts the fact that \(\| g \|_X \geq \| g_n \|_X \geq n \) for all \(n \geq 1 \). Thus, the condition \(M^p(A) \) holds for some \(A > 0 \), and \(X \) is necessarily rearrangement invariant.

(For \(p = 1 \), Lemma 3 was given in [12], [16], but the present proof is simpler.)

A space \(X \subset L^p \) is normally imbedded in \(L^p \) if \(X \) is dense in \(L^p \) and if \(\| f \|_p \leq \| f \|_X \) for all \(f \in X \). Each of the Lorentz spaces \(\Lambda(C, p) \) [9] (where \(C \) is a class of decreasing positive functions \(c \) with \(\int c \, dt = 1 \)) is normally imbedded in \(L^p \) and satisfies \(M^p(1) \). Here is an example in the opposite direction:

Example 1. The space \(\Lambda_{a}, a = p^{-1}, p > 1 \), with the norm \(\| f \|_\Lambda = a \int_0^1 t^{n-1} f^*(t) \, dt \), is normally imbedded in \(L^p \). On the other hand, it does not satisfy \(M^p \). Indeed, let \(\phi(t) = t^{-a} \log^{-1}(1/t), 0 < t \leq e^{-1}; \quad = 0; \quad e^{-1} < t < 1 \). Then \(\phi \in L^p \), but \(\| \phi \|_\Lambda = +\infty \).

We put, for \(0 < a < e^{-1} \),

\[
g_a(t) = \phi(a), \quad 0 \leq t \leq a, \quad f_a(t) = \phi(a), \quad 0 \leq t \leq b, \]

\[
= \phi(t), \quad a \leq t \leq 1, \quad = 0, \quad b \leq t \leq 1,
\]

selecting \(b \) in such a way that \(\| f_a \|_p = \| g_a \|_p \).
Then for each α, $g_\alpha <^p f_\alpha$, but $\|g_\alpha\|_\Lambda \to \infty$, $\|f_\alpha\|_\Lambda = \|f_\alpha\|_p = \|g_\alpha\|_p \to \|f\|_p$ for $\alpha \to 0$. Lemma 3 shows that \mathcal{M}_p is violated.

Lemma 4. Assume that $f_0, g_0, g_0 \in S$ are positive and that $g_0 <^p f_0$. Then there exists a positive operator $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$ with the property that $g_0 \leq Tf_0$.

Proof. Let g_0 be given by

$$g_0 = \sum_{i=1}^n a_i \chi_{e_i}, \quad \alpha_1 \geq \cdots \geq \alpha_n \geq 0, \quad e_i \cap e_\mu = \emptyset, \quad \nu \neq \mu.$$

By Lemma 1 (applied to $g_0^{<p}$) there exist disjoint subsets $e_\nu, \nu = 1, \ldots, n$, of I for which $m_{e_\nu} = m_{e_\nu}$ and

$$\int_0^\alpha f_0^{<p} \chi_{e_\nu} \, dt \geq \alpha^p m_{e_\nu}, \quad \nu = 1, \ldots, n.$$

We define an operator T on the set of all locally p-integrable functions by

$$Tf = \sum_{\nu=1}^n \left\langle f \chi_{e_\nu}, h_\nu \right\rangle \chi_{e_\nu}.$$

Clearly T is positive and linear and

$$\|Tf\|_p \leq \sum_{\nu=1}^n \|f \chi_{e_\nu}\|_p \leq \|f\|_p$$

for all $f \in L^p$. On the other hand, for any $f \in L^\infty$,

$$\left\langle f \chi_{e_\nu}, h_\nu \right\rangle \leq \|f \chi_{e_\nu}\|_p \leq \|f\|_\infty \|X_{e_\nu}\|_p, \quad 1 \leq \nu \leq n.$$

Consequently, $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$. Furthermore by (3.2),

$$Tf_0 = \sum_{\nu=1}^n \|f_0 \chi_{e_\nu}\|_p \chi_{e_\nu} \geq \sum_{\nu=1}^n \alpha_\nu \chi_{e_\nu} = g_0.$$

Now we can prove

Theorem 2. Let X be a Banach function space over I with $X \subset L^p + L^\infty$. The necessary and sufficient condition for X to have the interpolation property for the pair (L^p, L^∞) or, equivalently, this property in the strong sense for (L^p, L^∞) is that $X \in \mathcal{M}_p$.

Proof. First let $X \in \mathcal{M}_p$. By Lemma 3, $X \in \mathcal{M}_p(A)$ for some $A > 0$. Let $g, f \in X$ and $g <^p f$ (with respect to L^p, L^∞). Then by Lemma 2, $g <^p \lambda_A f$, and so $\|g\|_X \leq \lambda_A \|f\|_X$.
Now if \(T \in \mathcal{B}(L^p, L^\infty; 1, 1) \), then for each \(f \in X \), \(Tf \prec f \). It follows that \(T \) maps \(X \) into itself and that \(\| T \|_X \leq A\lambda_p \). And if \(0 \neq T \in \mathcal{B}(L^p, L^\infty; K_p, K_\infty) \), then \(\alpha T \in \mathcal{B}(L^p, L^\infty; 1, 1) \), where \(\alpha^{-1} = \text{Max} (K_p, K_\infty) \). This shows that \(X \) has the interpolation property in the strong sense.

Conversely, suppose that \(X \) has the interpolation property for the pair \((L^p, L^\infty)\), but fails to satisfy \(M^p \). Then there exist positive functions \(f \) and \(g \) such that \(f \in X \), \(\| f \|_X = 1 \), \(g \prec f \), but \(g \notin X \). Let \(0 \leq g_n \in S \) and \(g_n \uparrow g \). As \(g_n \prec f \), there exist, by Lemma 4, positive operators \(T_n \in \mathcal{B}(L^p, L^\infty; 1, 1) \) such that \(g_n \leq T_n f \) for each \(n \geq 1 \). This implies that \(g_n \in X \) for each \(n \geq 1 \). Since \(\cdot \|_X \) satisfies (1.2), \(\| g_n \|_X \uparrow \infty \) holds. We may therefore assume without loss of generality that \(\| g_n \|_X > n \cdot 2^n \), \(n \geq 1 \). It follows that \(\| T_n \|_X \geq \| T_n f \|_X > n \cdot 2^n \), \(n \geq 1 \). Putting \(T = \sum_{n=1}^{\infty} 2^{-n} T_n \), we obtain a positive operator belonging to \(\mathcal{B}(L^p, L^\infty; 1, 1) \). On the other hand, \(\| Tf \|_X \geq \| 2^{-n} T_n f \|_X > n \) holds for each \(n \), since \(T_n \) is a positive operator. This contradicts the fact that \(Tf \in X \), and shows that the condition is necessary.

From the proof above, we have immediately

Corollary 1. If \(X \) satisfies the condition \(M^p(A) \) and \(T \in \mathcal{B}(L^p, L^\infty; K_p, K_\infty) \), then

\[
Tf \prec^p \lambda_p \text{Max} (K_p, K_\infty) f \quad \text{for each } f \in L^p;
\]

\[
\| T \|_X \leq A\lambda_p \text{Max} (K_p, K_\infty).
\]

In the last inequalities, \(\lambda_p \leq 2^{1/p} \leq 2 \). We shall show that \(\lambda_p \) cannot be here replaced by 1.

Example 2. For each \(p \), \(1 < p < +\infty \), there exists an operator \(T \in \mathcal{B}(L^p, L^\infty; 1, 1) \), for which \(T \prec_1 f \) is not true for some \(f \).

Let \(\alpha > 1 \) be chosen so that \(c = (a^p - 1 + 1)/(a^p + 1) < 1 \) (actually, this is true for any \(\alpha > 1 \)). We define

\[
f_0(x) = \alpha \quad \text{on } (0, \frac{1}{2}), \quad g_0(x) = \beta \quad \text{on } (0, c),
\]

\[
= 1 \quad \text{on } (\frac{1}{2}, 1), \quad = 0 \quad \text{on } (c, 1),
\]

where \(\beta = (a^p + 1)/(a^p - 1 + 1) \). An easy calculation shows that

\[
\| g_0 \|_p = \| f_0 \|_p,
\]

\[
\| f_0 \|_1 \| g_0 \|_\infty = \| f_0 \|_p.
\]

We define the positive operator

\[
Tf = \frac{1}{\| f_0 \|_p^p} \langle f, f_0^p \rangle g_0.
\]

Since \(\| h \|_q = \| h \|_p \) for \(h \geq 0 \), it follows from (3.5) that, if \(f \in L^p \),

\[
\| Tf \|_p \leq \frac{1}{\| f_0 \|_p^p} \| f \|_p \| f_0 \|_1 \| g_0 \|_p = \| f \|_p,
\]

and from (3.6) that, if \(f \in L^\infty \),

\[
\| Tf \|_\infty \leq \frac{1}{\| f_0 \|_p^p} \| f \|_\infty \| f_0 \|_1 \| g_0 \|_\infty = \| f \|_\infty.
\]
Also, $Tf_o = g_0$. However, $g_0 <^p f_0$ is incorrect, since

$\int_0^c g_0^p \, dt = \|f_0\|_p^p > \int_0^c f_0^p \, dt$.

Example 3. There exists a space $X \in \mathcal{M}^p(1)$, and an operator $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, for which $\|T\|_X > 1$.

In the notations of the last example, we take $X = L^p$ with the norm $\|f\|_X = \|f \cdot \chi(0, 1)\|_p$. It is immediately clear that $g <^p f$ implies $\|g\|_X \leq \|f\|_X$, so that $X \in \mathcal{M}^p(1)$. For the operator (3.7) we have $g_0 = Tf_0$, but $\|g_0\|_X > \|f_0\|_X > 0$ by (3.8).

If $g = Tf$ and $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, then we have $g <^p f$. We shall show that the converse is not true, in general. This will also show that one cannot replace the relation $<^p$ by \ll in Lemma 4.

Example 4. Let $p > 1$ be an integer, and let f_0 and g_0 be the functions of the Example 2. We put $f_1 = f_0 + 1$ and $g_1 = g_0 + 1$, where 1 denotes the characteristic function of $(0, 1)$. Let

$G(t) = \|f_0 + t1\|_p^p - \|g_0 + t1\|_p^p, \quad t \geq 0.$

Using (3.5), (3.6) and elementary calculations (for instance, with induction in k) we can show that

$G(0) = G'(0) = 0, \quad G^{(k)}(0) \geq 0, \quad 2 \leq k \leq p.$

It follows that $G(t) \geq 0$ for all $0 \leq t \leq 1$, hence we have $g_1 <^p f_1$ on account of (2.5).

Now suppose that there exists an operator $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$ such that $Tf_1 = g_1$. Since $\|T1\|_\infty \leq 1$, we have $0 \leq g_1 - 1 \leq Tf_1 - T1$, hence

$\|g_0\|_p = \|g_1 - 1\|_p \leq \|Tf_1 - T1\|_p \leq \|f_1 - 1\|_p = \|f_0\|_p.$

From (3.5) it follows that $T1 = 1$ and $Tf_0 = g_0$. Since $\chi(1/2, 1) = (\alpha 1 - f_0)/(\alpha - 1)$, we have

$T\chi(1/2, 1) = (\alpha - 1)^{-1}(\alpha 1 - g_0).$

The last function has values $\alpha/(\alpha - 1) > 1$ on the interval $(c, 1)$, hence $\|T\chi(1/2, 1)\|_\infty > 1$, a contradiction. Consequently, there does not exist an operator $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$ with the property $Tf_1 = g_1$.

4. Interpolation theorems for the pair L^1, L^∞. In this section we assume that X is a Banach function space for which $X \subset L^1 + L^\infty$, $1 < q < +\infty$, and that p is the conjugate exponent, $1/p + 1/q = 1$. We define a quasi-order relation $<^q$. We write $f_1 <^q f_2$ if for every $g_1 \in L^p$, a $g_2 \in L^p$ such that both $g_2 <^p g_1$ and $\langle f_1, g_1 \rangle \leq \langle f_2, g_2 \rangle$. For example, $0 \leq f_1 \leq f_2$ implies $f_1 <^q f_2$, for here we can take $g_2 = |g_1|$. We begin with some properties of the relation $<^q$. For given $f, g \geq 0$, there exists a $g \geq 0$ with the properties $g \sim \tilde{g}$ and $\langle f^*, g \rangle = \langle f, \tilde{g} \rangle$, [8, p. 61]. From this, using (2.7), it is not difficult to derive

$\langle f_1, g \rangle <^q \langle f_2, g \rangle$ if and only if $f_1 <^q f_2^*.$
If $f_1 < f_2$, then for each g_1 we have $\langle f_1^*, g_1 \rangle \leq \langle f_2^*, g_1 \rangle \leq \langle f_2^*, g_1 \rangle$. Hence, by (4.1),

\begin{equation}
(4.2) \quad f_1 < f_2 \text{ implies } f_1 <_q f_2.
\end{equation}

Similar to (2.9) is the property

\begin{equation}
(4.3) \quad f_i <_q f_i, \quad i = 1, 2, \text{ and } a_1, a_2 \geq 0, \quad a_1 + a_2 = 1 \quad \text{imply } a_1 f_1 + a_2 f_2 <_q f.
\end{equation}

In fact, for each $g \in L^p$, we can find g_1 and g_2 such that $g <^g g$ and $\langle f_i, g \rangle \leq \langle f, g \rangle$, $i = 1, 2$. Hence,

\[\langle a_1 f_1 + a_2 f_2, g \rangle \leq \langle f, a_1 g_1 \rangle + \langle f, a_2 g_2 \rangle = \langle f, a_1 g_1 + a_2 g_2 \rangle, \]

where $a_1 g_1 + a_2 g_2 <^g g$ by (2.9). Since g is arbitrary, we get (4.3).

For a Banach function space X, X' will denote the conjugate space of X, that is, the space of all measurable functions g such that

\[\|g\|_{X'} = \sup \{ |\langle f, g \rangle|; f \in X, \|f\|_X \leq 1 \} < \infty. \]

For any operator T acting on X, T' will denote the conjugate operator of T acting on the conjugate space X'. Note that $T \in \mathcal{B}(L^1, L^1; K_1, K_2)$ implies $T' \in \mathcal{B}(L^p, L^{q'}; K_q, K_1)$.

Lemma 5. If $T \in \mathcal{B}(L^1, L^1; 1, 1)$, then

\begin{equation}
(4.4) \quad Tf <_q \lambda f \quad \text{for each } f \in L^1.
\end{equation}

Proof. We have $T' \in \mathcal{B}(L^{p'}, L^{q'}; 1, 1)$, hence $T'g <^p \lambda g$ holds for every $g \in L^{p'}$, by (3.3). If $f \in L^p$ and $g_1 \in L^p$ are given, we select $g_2 = (1/\lambda f)T'g_1$. Then $g_2 <^p g_1$ and $\langle Tf, g_1 \rangle = \langle f, T'g_1 \rangle = \langle \lambda f, g_2 \rangle$, and we have proven (4.4).

We shall use the following monotony conditions for a Banach function space X:

- $X \in \mathcal{M}_q$, if $g <_q f, f \in X$ imply $g \in X$;
- $X \in \mathcal{M}_q(A)$, if $g <_q f, f \in X$ imply $g \in X$ and $\|g\|_X \leq A\|f\|_X$.

With the same proof as for Lemma 3 we have

Lemma 6. If $X \in \mathcal{M}_q$, then $X \in \mathcal{M}_q(A)$ for some $A > 0$; moreover, X is rearrangement invariant.

Lemma 7. If the space X does not satisfy the condition $\mathcal{M}_q(A)$, then there exists a positive operator $T \in \mathcal{B}(L^1, L^q; 1, 1)$ and a function $0 \leq f \in X$ for which $\|Tf\|_X > A\|f\|_X$.

Proof. We shall first show that under the assumptions of Lemma 7, the conjugate space X' of X does not satisfy $\mathcal{M}_p(A)$. There exist functions $f_1, f_2 \in X$ such that $f_1 <_q f_2$ and $\|f_1\|_X > A\|f_2\|_X$. For any $\epsilon > 0$ satisfying $(1 - \epsilon)\|f_1\|_X > A\|f_2\|_X$, we can find, by virtue of the reflexivity of the semicontinuous norm $\|\cdot\|_X$, a function $g_1 \in X' \cap L^p$ such that $\|g_1\|_X = 1$ and $(1 - \epsilon)\|f_1\|_X \leq \langle f_1, g_1 \rangle$. Since $f_1 <_q f_2$, there exists a function $g_2 \in L^p$ for which $g_2 <^p g_1$ and $\langle f_1, g_1 \rangle \leq \langle f_2, g_2 \rangle$. This implies

\[A\|f_2\|_X < (1 - \epsilon)\|f_1\|_X \leq \|f_2\|_X \|g_2\|_X. \]
Thus, we have obtained two functions \(g_1, g_2 \in X' \), for which \(g_2 < p g_1 \), but \(\|g_2\|_X > A\|g_1\|_X \), contradicting the condition \(M^p(\mathcal{A}) \).

For \(g_1 \) and \(g_2 \), obtained above, we may assume \(g_1, g_2 \geq 0 \). Since \(\cdot \) is also semicontinuous, we can select an \(h \in S \cap X' \) such that \(0 \leq h \leq g_2 \) and \(\|h\|_X > A\|g_1\|_X \). By Lemma 4 there exists a positive operator \(T \in \mathscr{B}(L^p, L^{\infty}; 1, 1) \) for which \(TG_1 \geq h \). Choose an \(\varepsilon > 0 \) such that \((1 - \varepsilon)\|h\|_X \geq A\|g_1\|_X \). There exists a function \(0 \leq f \in X \), \(\|f\|_X = 1 \) with the property \(\langle f, h \rangle \geq (1 - \varepsilon)\|h\|_X \). It follows that \((1 - \varepsilon)\|h\|_X \leq \langle f, h \rangle \leq \langle f, Tg_1 \rangle \leq \|Tf\|_X \|g_1\|_X \). Consequently, we get \(\|Tf\|_X > A \), for the positive operator \(T' \in \mathscr{B}(L^1, L^\infty; 1, 1) \).

Now we can state our interpolation theorem for the pair \((L^1, L^\infty)\).

Theorem 3. Let \(X \) be a Banach function space over \(I \) with \(X \subseteq L^1 + L^\infty \). The necessary and sufficient condition for \(X \) to have the interpolation property for the pair \((L^1, L^\infty)\), or, equivalently, this property for \((L^1, L^\infty)\) in the strong sense, is that \(X \in \mathscr{M}_q \).

Proof. First let \(X \in \mathscr{M}_q \). By Lemma 6, \(X \in \mathscr{M}_q(\mathcal{A}) \) for some \(A > 0 \). Let \(0 \neq T \in \mathscr{B}(L^1, L^q; K_1, K_q) \), we put \(\alpha^{-1} = \text{Max}(K_1, K_q) \). Then \(\alpha T \in \mathscr{B}(L^1, L^q; 1, 1) \) and so \(\alpha T \langle f, \rangle < \lambda_p \phi \) holds for all \(f \in L^q \) by Lemma 5. Thus, \(f \in L^q \cap X \) implies \(Tf \in X \) and \(\|Tf\|_X \leq \lambda_p A \alpha^{-1} \|f\|_X \). We extend this relation to all \(f \in X \). Since \(f \in L^1 + L^q \), all truncations \(f^{(n)} \) belong to \(L^q \), and all differences \(f - f^{(n)} \) belong to \(L^1 \) for \(n = 1, 2, \ldots \). Since \(|f - f^{(n)}| \to 0 \) a.e. and \(\|T(f - f^{(n)})\|_1 \leq K_1 \|f - f^{(n)}\|_1 \), we have \(\|Tf - T^{(n)}\|_1 \to 0 \). Taking, if necessary, a subsequence, we can assume that the sequence \(T^{(n)} \), \(n = 1, 2, \ldots \), converges a.e. to \(Tf \). By (1.2) and the semicontinuity of \(\cdot \) \(X \) we have

\[
\|Tf\|_X \leq \liminf_{n \to \infty} \|T^{(n)}\|_X \\
\leq \liminf_{n \to \infty} \lambda_p A \alpha^{-1} \|f^{(n)}\|_X \leq \lambda_p A \alpha^{-1} \|f\|_X.
\]

This shows that \(T \in \mathscr{B}(X) \), and that \(\|T\|_X \leq \lambda_p A \alpha^{-1} \).

The necessity of the condition \(\mathscr{M}_q(\mathcal{A}) \) follows exactly as in the proof of Theorem 2.

Corollary 2. If \(X \in \mathscr{M}_q(\mathcal{A}) \) and \(T \in \mathscr{B}(L^1, L^q; K_1, K_q) \), then \(T \in \mathscr{B}(X) \) and

\[
\|T\|_X \leq \lambda_p A \text{ Max } (K_1, K_q).
\]

5. **Complete continuity of operators in interpolation theorems.** In this section we give necessary and sufficient conditions for the space \(X \) in order that every operator \(T \) in \(\mathscr{B}(L^p, L^\infty) \) (or in \(\mathscr{B}(L^1, L^\infty) \)) should be completely continuous on \(X \) if \(T \) is completely continuous on one of the spaces of the pair. We assume that \(X \subseteq L^p + L^\infty \) (or \(X \subseteq L^1 + L^\infty \)) for the pair \((L^p, L^\infty)\) (respectively, \((L^1, L^\infty)\)). The basic idea of the arguments below is due to the paper \([4]\), and the setting and the proofs follow the lines of \([11]\), \([14]\). The conditions are given in terms of the norms of compression operators. We denote by \(\sigma_a, a > 0 \), the compression operator:

\[
\sigma_a f(t) = f(at) \quad \text{if } 0 < at < l,
\]
\[
= 0 \quad \text{otherwise.}
\]
For any rearrangement invariant space \((X, \| \cdot \|_X)\) with \(\gamma = 1\), we have \(\sigma_a \in \mathcal{B}(X)\) and (see [13])
\[
\|\sigma_a\|_X \leq 1 \quad \text{if } a \geq 1; \quad 1 \leq \|\sigma_a\|_X \leq a^{-1} \quad \text{if } 0 < a \leq 1.
\]

It is clear that \(\sigma_{ab} = \sigma_a \sigma_b\) if \(b \geq 1\), or if \(0 < a, b < 1\). It follows from this and (5.2) that
\[
\|\sigma_a\|_X \leq (c/a)\|\sigma_c\|_X \quad \text{if } 0 < a \leq c, c > 1.
\]

The norms \(\|\sigma_a\|_X\), which play an important role in the theory of function spaces, have been discussed in [1], [13], [14]. We improve the inequality (3.4) of Corollary 1.

Lemma 8. If \(X\) satisfies the condition \(\mathcal{M}^p(A), 1 \leq p < \infty\), then, for every \(0 \neq T \in \mathcal{B}(L^p, L^\infty; K_\rho, K_{\infty})\),
\[
\|T\|_X \leq A\lambda_p K_{\infty} \|\sigma_a\|_X,
\]
where \(a = K_{\rho} \cdot K_{\rho}^{-p}\).

Proof. In the assumptions of the lemma, both operators \(T' = K_{\infty}^{-1} T \sigma_{a^{-1}}\) and \(T'' = K_{\infty}^{-1} T \sigma_{a^{-1}}\) belong to \(\mathcal{B}(L^p, L^\infty; 1, 1)\), as can be easily seen. If \(a \geq 1\), \(\sigma_{a^{-1}} T a^{-1} = I\) on \(X\), hence \(T = K_{\infty} T' \sigma_{a^{-1}}\); if \(0 < a < 1\), \(\sigma_{a^{-1}} = I\) on \(X\), hence \(T = K_{\infty} T''\). In both cases, (5.4) follows from Corollary 1.

An operator \(A\) on the set of locally integrable functions is called an averaging operator if \(A\) is defined by
\[
Af = \sum_{v=1}^{n} (m_{e_v})^{-1} \langle f, \chi_{e_v} \rangle \chi_{e_v}
\]
where \(m_{e_v} < \infty\), \(e_v \subset e_\mu = \emptyset\), if \(v \neq \mu\) and \(n \geq 1\). For convenience, we sometimes denote the operator (5.5) by \(A_g\), where \(g = \sum_{v=1}^{n} \sigma_{e_v} \chi_{e_v}\), is any function in \(S\) corresponding to the sets \(e_1, \ldots, e_n\). It is clear that \(A_g g = g\) for all \(g \in S\). An averaging operator \(A\) belongs to \(\mathcal{B}(L^1, L^\infty)\). If \(X\) is rearrangement invariant, then, because of the relation \(Af < f\), \(A\) and \(I - A\) belong to \(\mathcal{B}(X)\). Moreover, \(A\) is completely continuous. For each \(p, 1 \leq p < \infty\), there exists a sequence of averaging operators \(A_n, n = 1, 2, \ldots\), which converges in \(L^p\) strongly to the identity operator \(I_n\) [5, p. 21].

We have

Theorem 4. Let \(X\) satisfy \(\mathcal{M}^p(A), 1 \leq p < \infty\). In order that every operator \(T \in \mathcal{B}(L^p, L^\infty)\), which is completely continuous on \(L^p\), should be also completely continuous on \(X\), it is necessary and sufficient that
\[
\lim_{a \to \infty} \|\sigma_a\|_X = 0.
\]

Proof. Assume that (5.6) is satisfied. The image \(TV\) of the unit ball \(V\) in \(L^p\) has compact closure in \(L^p\). We select a sequence \(A_n, n = 1, 2, \ldots\), of averaging operators converging strongly to \(I\) in \(L^p\). Then
\[
\lim_{n \to \infty} \left\{ \sup_{f \in V} \| (I - A_n)Tf \|_p \right\} = 0,
\]
hence \(\lim_{a \to 0} \| (I - A_n) T \|_{p} = 0 \). Since \(\| (I - A_n) T \|_{\infty} \leq \| T \|_{\infty} \), putting \(a_n = \left(\| (I - A_n) T \|_{\infty} \right)^p \) and \(c_n = \left(\| T \|_{\infty} \right)^p \), we have \(a_n \leq c_n \) and \(c_n \to \infty \). Using (5.4) and (5.5) we obtain

\[
\| (I - A_n) T \|_X \leq A \lambda_p \| (I - A_n) T \|_{\infty} \sigma_n \|_X
\]

\[
\leq A \lambda_p \| T \|_{\infty} \| \sigma_n \|_X \to 0.
\]

Since \(T \) is the uniform limit of the operators \(A_n T \), \(n = 1, 2, \ldots \), which are completely continuous on \(X \), \(T \) also has the property.

Conversely, assume that (5.6) is not valid for \(X \). It has been shown in [14] that there exists an operator \(T_0 \in \mathcal{B}(L^1, L^\infty) \) which is completely continuous on \(L^1 \), but fails to be so on \(X \). Such an operator \(T_0 \) is also completely continuous on \(L^p \), \(1 \leq p < \infty \) [4], [14]. Thus the necessity is proved.

If \(I \) is a finite interval, then for each operator \(T \) which is completely continuous on \(L^\infty \), there exists a sequence of averaging operators \(A_n, n = 1, 2, \ldots \), such that \(\| (I - A_n) T \|_{\infty} \to 0 \) [5, p. 22]. This fact can be used in the proof of the following theorem.

Theorem 5. Let \(I \) be a finite interval, and let \(X \) satisfy \(\mathcal{M}^p(A), 1 \leq p < \infty \). In order that every \(T \in \mathcal{B}(L^p, L^\infty) \) which is completely continuous on \(L^\infty \) should also be completely continuous on \(X \), it is necessary and sufficient that

\[
(5.7) \lim_{a \to 0} a^{1/p} \| \sigma_a \|_X = 0.
\]

Proof. The sufficiency is derived from (5.4) in a similar manner as in the proof of Theorem 4. Without loss of generality, we prove the necessity for \(l = 1 \). First we note that the condition \(\mathcal{M}^p(A) \) implies

\[
(5.8) a^{1/p} \| \sigma_a \|_X \leq A \quad \text{for all } a, 0 < a \leq 1.
\]

This follows from the relation \(a^{1/p} \sigma_a f \leq p f, 0 < a \leq 1, f \in L^p \), which can be easily verified.

Suppose that (5.7) is not true. Then there exists a \(\delta > 0 \) such that for arbitrarily small \(a > 0 \), \(a^{1/p} \| \sigma_a \|_X > \delta \). For each \(a \) of this kind there exists a function \(g \), which we may assume positive, such that

\[
(5.9) g \in \mathcal{S}; \quad \| g \|_X \leq 1; \quad a^{1/p} \| \sigma_a g \|_X > \delta.
\]

We can replace \(g \) by \(\chi_{(0,a)} g \), since this will not change \(\sigma_a g \). Then, for \(n \to \infty \) we will have \(\chi_{(1/n,a)} \uparrow g, \sigma_a (\chi_{(1/n,a)} g) \uparrow \sigma_a g \). From (1.2) it follows that we can assume that the functions \(g \) in (5.9) have support \((c, a) \), \(0 < c < a \). In addition to (5.9) we have

\[
(5.10) a^{1/2p} \| \sigma_{\sqrt{a}} g \|_X > A^{-1} \delta,
\]

since by (5.8) and (5.9)

\[
\delta < a^{1/p} \| \sigma_{\sqrt{a}} \|_X \| \sigma_{\sqrt{a}} g \|_X.
\]
We can select a sequence of functions g_n, with supports (c_n, a_n), $n = 1, 2, \ldots$, which satisfy (5.9) and (5.10) and for which, in addition, all intervals (c_n, a_n), $n = 1, 2, \ldots$, are disjoint, all intervals $(c_n/(a_n)^{1/2}, (a_n)^{1/2})$ are disjoint, and $\sum a_n^{1/2} < +\infty$.

We define the operators

\[T = \sum_{n=1}^{\infty} T_n; \quad T_n = a_n^{1/2a} \sigma_{(a_n)^{1/2}} A g_n, \quad n = 1, 2, \ldots, \]

where $A g_n$ are the averaging operators corresponding to the functions g_n. Then $\|T_n\|_\infty \leq a_n^{1/2p};$ the T_n are completely continuous on L^∞. It follows that also T is completely continuous in L^∞.

For any f, $T_n f = T_n (f_{X(c_n, a_n)})$. Also, $T_n f$ has support $(c_n/(a_n)^{1/2}, (a_n)^{1/2})$. Thus, all $T_n f$ are disjoint. It is easy to see that $\|\sigma_a\|_p \leq a^{-1/p}, 0 < a < 1$. From this it follows that $\|T_n\|_p \leq 1$. Therefore

\[\|Tf\|_p = \sum_{n=1}^{\infty} \|T_n f\|_p \leq \sum_{n=1}^{\infty} \|f_{X(c_n, a_n)}\|_p \leq \|f\|_p, \quad f \in L^p, \]

and we see that $T \in \mathcal{B}(L^p)$.

It remains to show that T is not completely continuous on X. For the sequence of functions g_n, bounded in norm in X, we have $T g_n = T_n g_n$, and by (5.10), $\|T_n g_n\|_x \geq A^{-1} \delta > 0$, also $T_n g_n(t) \to 0$ everywhere. If $T g_n$ would have a convergent subsequence in X, it could converge only to 0, and this is impossible.

We turn now to the pair (L^1, L^q), $1 < q < \infty$. Applying similar arguments (or considering the conjugate spaces) we obtain

Lemma 9. If $X \in \mathcal{M}_q(A)$, $1 < q < \infty$, then, for every $0 \neq T \in \mathcal{B}(L^1, L^q; K_1, K_q)$, we have

\[\|T\|_X \leq \lambda_p A (K_q^q K_1^{-1})^{1/(q-1)} \|\sigma_a\|_x, \]

where $a = (K_q^q K_1^{-1})^{q/(q-1)}$.

We also have

Theorem 6. Let $X \in \mathcal{M}_q(A)$, $1 < q < \infty$. In order that every operator $T \in \mathcal{B}(L^1, L^q)$ which is completely continuous on L^q (or L^1) should be also completely continuous on X, it is necessary and sufficient that the following condition (5.13) (resp. (5.14)) hold:

\[\lim_{a \to 0} a \|\sigma_a\|_x = 0; \]

\[\lim_{a \to \infty} a^{1/a} \|\sigma_a\|_x = 0. \]

6. Orlicz spaces. In view of Examples 2 and 3 it appears to be worthwhile to give examples of classes of function spaces $X \in \mathcal{M}_p(1)$, $1 \leq p < \infty$, for which $\|T\|_x \leq 1$ holds for every $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We consider N-functions (compare [6]) M having the expression

\[(6.1) \quad M(u) = \int_0^u (u-t)^p \, d\phi(t), \quad u > 0,\]

where $1 \leq p < \infty$ and ϕ is a positive nondecreasing left continuous function with $\phi(0) = 0$. For example, for r with $p \leq r < \infty$, the N-function $M(u) = u^r$, $u > 0$, has an expression (6.1). For an N-function M, let $L_M = L_M(I)$ denote the Orlicz space defined by M with the norm $\| \cdot \|_M$, where,

$$
\|f\|_M = \inf \{ \xi : \rho_M(\xi^{-1}f) \leq 1, \xi > 0 \}
$$

and

$$
\rho_M(f) = \int_I M(|f(t)|) \, dt, \quad f \in L_M.
$$

Then we have

\[\text{THEOREM 7.} \quad \text{Let } M \text{ have the expression (6.1). The Orlicz space } L_M \text{ has the interpolation property for the pair } (L^p, L^\infty) \text{ in the strong sense. In addition, for every } T \in \mathcal{B}(L^p, L^\infty; K_p, K_\infty), \]

\[\|T\|_M \leq \max (K_p, K_\infty). \]

\[\text{Proof.} \quad \text{We may assume that } K_p = K_\infty = 1. \text{ Let } f \in L_M \text{ and } T \in \mathcal{B}(L^p, L^\infty; 1, 1). \text{ We have}
\]

$$
\rho_M(Tf) = \int_I M(|Tf(t)|) \, dt = \int_I \left\{ \int_0^{\|Tf(t)\|} (|Tf(t)| - s)^p \, d\phi(s) \right\} \, dt
$$

by (6.1). By Fubini's theorem this implies

$$
\rho_M(Tf) = \int_0^\infty d\phi(s) \int_{E_s} (|Tf(t)| - s)^p \, dt,
$$

where E_s, $s > 0$, is the set $\{ t : |Tf(t)| > s, t \in I \}$. In view of the equality $(|Tf| - s)\chi_{Es} = |Tf| - |Tf|^{(s)} = |Tf - T(f)^{(s)}|$, the last term is equal to

$$
\int_0^\infty d\phi(s) \int_I |Tf(t) - (Tf(t))^{(s)}|^p \, dt = \int_0^\infty \|Tf - (Tf)^{(s)}\|_p^p \, d\phi(s).
$$

Since $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, we get

$$
\|Tf - (Tf)^{(s)}\|_p^p \leq \|Tf - T(f)^{(s)}\|_p^p \leq \|f - f^{(s)}\|_p^p,
$$

which, in turn, implies $\rho_M(Tf) \leq \rho_M(f)$. Consequently, on account of the fact that $\|f\|_M \leq 1$ if and only if $\rho_M(f) \leq 1$, we have $\|Tf\|_M \leq \|f\|_M$. As f is arbitrary, we obtain $\|T\|_M \leq 1$.

In the proof of the previous theorem, we see that this theorem is also valid for Lipschitz operators acting on both L^p and L^∞ if the norms of the operators are now interpreted as their bounds. Thus, $\|T\|_X$ is now the smallest number γ satisfying $\|Tf - Tg\|_X \leq \gamma \|f - g\|_X$ for all $f, g \in X$. Since every N-function M has the expression (6.1) for $p = 1$, Theorem 6 is a generalization of a theorem by W. Orlicz [13].
References

UNIVERSITY OF TEXAS AT AUSTIN,
AUSTIN, TEXAS 78712

TOKYO INSTITUTE OF TECHNOLOGY,
TOKYO, JAPAN