$\Gamma$-compact maps on an interval and fixed points
HTML articles powered by AMS MathViewer
- by William M. Boyce
- Trans. Amer. Math. Soc. 160 (1971), 87-102
- DOI: https://doi.org/10.1090/S0002-9947-1971-0280655-1
- PDF | Request permission
Abstract:
We characterize the $\Gamma$-compact continuous functions $f:X \to X$ where $X$ is a possibly-noncompact interval. The map $f$ is called $\Gamma$-compact if the closed topological semigroup $\Gamma (f)$ generated by $f$ is compact, or equivalently, if every sequence of iterates of $f$ under functional composition $(\ast )$ has a subsequence which converges uniformly on compact subsets of $X$. For compact $X$ the characterization is that the set of fixed points of $f\ast f$ is connected. If $X$ is noncompact an additional technical condition is necessary. We also characterize those maps $f$ for which iterates of distinct orders agree ($\Gamma (f)$ finite) and state a result on common fixed points of commuting functions when one of the functions is $\Gamma$-compact.References
- H. D. Block and H. P. Thielman, Commutative polynomials, Quart. J. Math. Oxford Ser. (2) 2 (1951), 241–243. MR 45250, DOI 10.1093/qmath/2.1.241
- William M. Boyce, Commuting functions with no common fixed point, Trans. Amer. Math. Soc. 137 (1969), 77–92. MR 236331, DOI 10.1090/S0002-9947-1969-0236331-5
- Ralph DeMarr, A common fixed point theorem for commuting mappings, Amer. Math. Monthly 70 (1963), 535–537. MR 159314, DOI 10.2307/2312067
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Jon H. Folkman, On functions that commute with full functions, Proc. Amer. Math. Soc. 17 (1966), 383–386. MR 190916, DOI 10.1090/S0002-9939-1966-0190916-6
- Karl Heinrich Hofmann and Paul S. Mostert, Elements of compact semigroups, Charles E. Merrill Books, Inc., Columbus, Ohio, 1966. MR 0209387
- John Philip Huneke, On common fixed points of commuting continuous functions on an interval, Trans. Amer. Math. Soc. 139 (1969), 371–381. MR 237724, DOI 10.1090/S0002-9947-1969-0237724-2
- J. T. Joichi, On functions that commute with full functions and common fixed points, Nieuw Arch. Wisk. (3) 14 (1966), 247–251. MR 205245
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144 Theodore Mitchell, Common fixed points for equicontinuous semigroups of mappings, Notices Amer. Math. Soc. 16 (1969), 115. Abstract #663-101.
- J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), no. 3, 399–448. MR 1501252, DOI 10.1090/S0002-9947-1923-1501252-3
- Allen L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703–706. MR 165508, DOI 10.1090/S0002-9939-1964-0165508-3
- A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95–112. MR 67907, DOI 10.1090/S0002-9904-1955-09895-1
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 87-102
- MSC: Primary 26.54; Secondary 22.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0280655-1
- MathSciNet review: 0280655