Identities involving the coefficients of a class of Dirichlet series. V, VI
Author:
Bruce C. Berndt
Journal:
Trans. Amer. Math. Soc. 160 (1971), 157-167
MSC:
Primary 30.24; Secondary 10.00
DOI:
https://doi.org/10.1090/S0002-9947-1971-0280693-9
MathSciNet review:
0280693
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In 1949 Chowla and Selberg gave a very useful formula for the Epstein zeta-function associated with a positive definite binary quadratic form. Several generalizations of this formula are given here. The method of proof is new and is based on a theorem that we formerly proved for ``generalized'' Dirichlet series. An easy proof of Kronecker's second limit formula is also given.
- [1] Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Edited by Milton Abramowitz and Irene A. Stegun. Third printing, with corrections. National Bureau of Standards Applied Mathematics Series, vol. 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1965. MR 0177136
- [2] Pierre Barrucand, Sur une formule de Selberg et Chowla, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A1398–A1401 (French). MR 244171
- [3] P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373. MR 179141, https://doi.org/10.4064/aa-9-4-365-373
- [4] Bruce C. Berndt, Generalised Dirichlet series and Hecke’s functional equation, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), 309–313. MR 225732, https://doi.org/10.1017/S0013091500011962
- [5] Bruce C. Berndt, Identities involving the coefficients of a class of Dirichlet series. III, Trans. Amer. Math. Soc. 146 (1969), 323–348. MR 252330, https://doi.org/10.1090/S0002-9947-1969-0252330-1
- [6] S. Chowla and A. Selberg, On Epstein’s zeta function. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 371–374. MR 30997, https://doi.org/10.1073/pnas.35.7.371
- [7] Atle Selberg and S. Chowla, On Epstein’s zeta-function, J. Reine Angew. Math. 227 (1967), 86–110. MR 215797, https://doi.org/10.1515/crll.1967.227.86
- [8] Paul Epstein, Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann. 63 (1906), no. 2, 205–216 (German). MR 1511399, https://doi.org/10.1007/BF01449900
- [9] Edmund Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, Herausgegeben von Arnold Walfisz, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962 (German). MR 0150109
- [10] Yoichi Motohashi, A new proof of the limit formula of Kronecker, Proc. Japan Acad. 44 (1968), 614–616. MR 234929
- [11] R. A. Rankin, A minimum problem for the Epstein zeta-function, Proc. Glasgow Math. Assoc. 1 (1953), 149–158. MR 59300
- [12] Carl Ludwig Siegel, Lectures on advanced analytic number theory, Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23, Tata Institute of Fundamental Research, Bombay, 1965. MR 0262150
- [13] H. M. Stark, 𝐿-functions and character sums for quadratic forms. II, Acta Arith. 15 (1968/69), 307–317. MR 242774, https://doi.org/10.4064/aa-15-3-307-317
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.24, 10.00
Retrieve articles in all journals with MSC: 30.24, 10.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1971-0280693-9
Keywords:
Epstein zeta-function,
Chowla-Selberg formula,
functional equation with gamma factors,
"generalized'' Dirichlet series,
identities
Article copyright:
© Copyright 1971
American Mathematical Society