Identities involving the coefficients of a class of Dirichlet series. V, VI
HTML articles powered by AMS MathViewer
- by Bruce C. Berndt
- Trans. Amer. Math. Soc. 160 (1971), 157-167
- DOI: https://doi.org/10.1090/S0002-9947-1971-0280693-9
- PDF | Request permission
Abstract:
In 1949 Chowla and Selberg gave a very useful formula for the Epstein zeta-function associated with a positive definite binary quadratic form. Several generalizations of this formula are given here. The method of proof is new and is based on a theorem that we formerly proved for “generalized” Dirichlet series. An easy proof of Kronecker’s second limit formula is also given.References
- Milton Abramowitz (ed.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1965. Superintendent of Documents. MR 0177136
- Pierre Barrucand, Sur une formule de Selberg et Chowla, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A1398–A1401 (French). MR 244171
- P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373. MR 179141, DOI 10.4064/aa-9-4-365-373
- Bruce C. Berndt, Generalised Dirichlet series and Hecke’s functional equation, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), 309–313. MR 225732, DOI 10.1017/S0013091500011962
- Bruce C. Berndt, Identities involving the coefficients of a class of Dirichlet series. III, Trans. Amer. Math. Soc. 146 (1969), 323–348. MR 252330, DOI 10.1090/S0002-9947-1969-0252330-1
- S. Chowla and A. Selberg, On Epstein’s zeta function. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 371–374. MR 30997, DOI 10.1073/pnas.35.7.371
- Atle Selberg and S. Chowla, On Epstein’s zeta-function, J. Reine Angew. Math. 227 (1967), 86–110. MR 215797, DOI 10.1515/crll.1967.227.86
- Paul Epstein, Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann. 63 (1906), no. 2, 205–216 (German). MR 1511399, DOI 10.1007/BF01449900
- Edmund Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962 (German). Herausgegeben von Arnold Walfisz. MR 0150109
- Yoichi Motohashi, A new proof of the limit formula of Kronecker, Proc. Japan Acad. 44 (1968), 614–616. MR 234929
- R. A. Rankin, A minimum problem for the Epstein zeta-function, Proc. Glasgow Math. Assoc. 1 (1953), 149–158. MR 59300, DOI 10.1017/S2040618500035668
- Carl Ludwig Siegel, Lectures on advanced analytic number theory, Tata Institute of Fundamental Research Lectures on Mathematics, No. 23, Tata Institute of Fundamental Research, Bombay, 1965. Notes by S. Raghavan. MR 0262150
- H. M. Stark, $L$-functions and character sums for quadratic forms. II, Acta Arith. 15 (1968/69), 307–317. MR 242774, DOI 10.4064/aa-15-3-307-317
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 157-167
- MSC: Primary 30.24; Secondary 10.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0280693-9
- MathSciNet review: 0280693