Maximal and minimal topologies
HTML articles powered by AMS MathViewer
- by Douglas E. Cameron
- Trans. Amer. Math. Soc. 160 (1971), 229-248
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281142-7
- PDF | Request permission
Abstract:
A topological space $(X,T)$ with property ${\text {R}}$ is maximal ${\text {R}}$ (minimal ${\text {R}}$) if $T$ is a maximal (minimal) element in the set ${\text {R}}(X)$ of all topologies on the set $X$ having property ${\text {R}}$ with the partial ordering of set inclusions. The properties of maximal topologies for compactness, countable compactness, sequential compactness, Bolzano-Weierstrass compactness, and Lindelöf are investigated and the relations between these spaces are investigated. The question of whether any space having one of these properties has a strictly stronger maximal topology is investigated. Some interesting product theorems are discussed. The properties of minimal topologies and their relationships are discussed for the quasi-$P$, Hausdorff quasi-$P$, and $P$ topologies.References
- P. Alexandrov and P. Urysohn, Une condition nécessaire et suffisante pour qu’une classe $\mathfrak {L}$ soit une classe $\mathfrak {D}$, C. R. Acad. Sci. Paris 177 (1923), 1274-1276.
- C. E. Aull, A certain class of topological spaces, Prace Mat. 11 (1967), 49–53. MR 0227914 C. E. Aull, Sequences in topological spaces, Notices Amer. Math. Soc. 12 (1965), 222. Abstract #65T-79.
- C. E. Aull, Sequences in topological spaces, Prace Mat. 11 (1968), 329–336. MR 0226580
- Manuel P. Berri, Minimal topological spaces, Trans. Amer. Math. Soc. 108 (1963), 97–105. MR 150724, DOI 10.1090/S0002-9947-1963-0150724-0 M. P. Berri, J. R. Porter and R. M. Stephenson, Jr., General topology and its relation to modern analysis and algebra. III, Proc. Conference Topology (Kanpur, 1968), Academic Press, New York, 1970.
- Nicolas Bourbaki, Espaces minimaux et espaces complètement séparés, C. R. Acad. Sci. Paris 212 (1941), 215–218 (French). MR 5322 —, Topologie générale, 3rd ed., Actualités Sci. Indust., no. 1142, Hermann, Paris, 1961. MR 25 #4480. M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-74.
- Zdeněk Frolík, Generalisations of compact and Lindelöf spaces, Czechoslovak Math. J. 9(84) (1959), 172–217 (Russian, with English summary). MR 105075, DOI 10.21136/CMJ.1959.100348
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Edwin Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309–333. MR 8692
- Shogo Ikenaga, Product of minimal topological spaces, Proc. Japan Acad. 40 (1964), 329–331. MR 167948
- J. E. Joseph, Continuous functions and spaces in which compact sets are closed, Amer. Math. Monthly 76 (1969), 1125–1126. MR 254811, DOI 10.2307/2317187
- Casimir Kuratowski, Topologie. Vol. II, Monografie Matematyczne, Tom XXI, Polskie Towarzystwo Matematyczne, Warszawa, 1952 (French). 2ème éd. MR 0054232
- R. E. Larson, Minimum and maximum topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 707–710. MR 276914
- Norman Levine, Simple extensions of topologies, Amer. Math. Monthly 71 (1964), 22–25. MR 163277, DOI 10.2307/2311297 —, When are compact and closed equivalent?, Amer. Math. Monthly 72 (1965), 41-44. A. S. Parhomenko, Über eineindeutige stetige Abbildungen, Mat. Sb. 5 (47) (1939), 197-210. (Russian) MR 1, 221.
- Jack R. Porter, Minimal first countable spaces, Bull. Austral. Math. Soc. 3 (1970), 55–64. MR 268849, DOI 10.1017/S0004972700045640
- Jack Porter and John Thomas, On $H$-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159–170. MR 238268, DOI 10.1090/S0002-9947-1969-0238268-4
- A. Ramanathan, A characterization of maximal-Hausdorff spaces, J. Indian Math. Soc. (N.S.) 11 (1947), 73–80. MR 26315
- A. Ramanathan, Maximal-Hausdorff spaces, Proc. Indian Acad. Sci., Sect. A. 26 (1947), 31–42. MR 0021682, DOI 10.1007/BF03170946
- A. Ramanathan, Minimal-bicompact spaces, J. Indian Math. Soc. (N.S.) 12 (1948), 40–46. MR 28010
- C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131–147. MR 203679, DOI 10.1090/S0002-9947-1966-0203679-7
- N. Smythe and C. A. Wilkins, Minimal Hausdorff and maximal compact spaces, J. Austral. Math. Soc. 3 (1963), 167–171. MR 0154254, DOI 10.1017/S1446788700027907
- R. M. Stephenson Jr., Minimal first countable topologies, Trans. Amer. Math. Soc. 138 (1969), 115–127. MR 238261, DOI 10.1090/S0002-9947-1969-0238261-1
- J. Pelham Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), 700–705. MR 0236884, DOI 10.1017/S1446788700006510
- Wolfgang J. Thron, Topological structures, Holt, Rinehart and Winston, New York-Toronto-London, 1966. MR 0200892 Hing Tong, Note on minimal bicompact spaces (preliminary report), Bull. Amer. Math. Soc. 54 (1948), 478-479. P. Urysohn, Sur les classes $\mathfrak {L}$ de M. Fréchet, Enseignement Math. 25 (1926), 77-83.
- Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. 94 (1925), no. 1, 262–295 (German). MR 1512258, DOI 10.1007/BF01208659 R. Vaidyanathaswamy, Set topology, Chelsea, New York, 1947.
- Giovanni Viglino, A co-topological application to minimal spaces, Pacific J. Math. 27 (1968), 197–200. MR 263009, DOI 10.2140/pjm.1968.27.197
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 229-248
- MSC: Primary 54.20
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281142-7
- MathSciNet review: 0281142