Critical Markov branching processes with general set of types
HTML articles powered by AMS MathViewer
- by H. Hering
- Trans. Amer. Math. Soc. 160 (1971), 185-202
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281272-X
- PDF | Request permission
Abstract:
This paper is concerned with the asymptotic behaviour of critical, quasi-positively regular Markov branching processes. Several results which have been established with restrictions on the set of types or on the parameter are proven on slightly different moment assumptions for an arbitrary set of types and continuous as well as discrete parameter. The methods employed are analytic and rest upon the properties of probability-generating functionals constructed from the given transition function.References
- V. P. Čistjakov, Two limit theorems for branching processes with $n$ types of particles, Teor. Verojatnost. i Primenen. 4 (1959), 477-478 = Theor. Probability Appl. 4 (1959), 436-437.
- Theodore E. Harris, The theory of branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 119, Springer-Verlag, Berlin; Prentice Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0163361, DOI 10.1007/978-3-642-51866-9
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Nobuyuki Ikeda, Masao Nagasawa, and Shinzo Watanabe, Branching Markov processes. I, J. Math. Kyoto Univ. 8 (1968), 233–278. MR 232439, DOI 10.1215/kjm/1250524137
- A. Joffe and F. Spitzer, On multitype branching processes with $\rho \leq 1$, J. Math. Anal. Appl. 19 (1967), 409–430. MR 212895, DOI 10.1016/0022-247X(67)90001-7
- Samuel Karlin, Positive operators, J. Math. Mech. 8 (1959), 907–937. MR 0114138, DOI 10.1512/iumj.1959.8.58058
- M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N.S.) 3 (1948), no. 1(23), 3–95 (Russian). MR 0027128
- J. E. Moyal, The general theory of stochastic population processes, Acta Math. 108 (1962), 1–31. MR 148107, DOI 10.1007/BF02545761
- T. W. Mullikin, Limiting distributions for critical multitype branching processes with discrete time, Trans. Amer. Math. Soc. 106 (1963), 469–494. MR 144386, DOI 10.1090/S0002-9947-1963-0144386-6
- Kôsaku Yosida and Shizuo Kakutani, Operator-theoretical treatment of Markoff’s process and mean ergodic theorem, Ann. of Math. (2) 42 (1941), 188–228. MR 3512, DOI 10.2307/1968993
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 185-202
- MSC: Primary 60.67
- DOI: https://doi.org/10.1090/S0002-9947-1971-0281272-X
- MathSciNet review: 0281272