Homomorphisms on groups and induced maps on certain algebras of measures
HTML articles powered by AMS MathViewer
- by Charles F. Dunkl and Donald E. Ramirez
- Trans. Amer. Math. Soc. 160 (1971), 475-485
- DOI: https://doi.org/10.1090/S0002-9947-1971-0283129-7
- PDF | Request permission
Abstract:
Suppose that $\varphi$ is a continuous homomorphism of a locally compact group $G$ into another such group, $H$, then $\varphi$ induces in a natural way a homomorphism ${\varphi ^ \ast }$ of the measure algebra of $G$, called $M(G)$, into $M(H)$. The action of ${\varphi ^ \ast }$ on the subspace ${M_0}(G)$ is studied in this paper. The space ${M_0}(G)$ is the nonabelian analogue to the space of measures on a locally compact abelian group whose Fourier-Stieltjes transforms vanish at infinity, and is defined herein. We prove that if $\varphi$ is an open homomorphism then ${\varphi ^ \ast }({M_0}(G)) \subset {M_0}(H)$. If $G$ and $H$ are abelian and $\varphi$ is not open, then ${\varphi ^ \ast }(M(G)) \cap {M_0}(H) = \{ 0\}$. The main tool for this theorem is the fact, proved herein, that $\varphi$ is open if and only if its adjoint, $\hat \varphi :\hat H \to \hat G$, is proper (where $\hat G,\hat H$ are the character groups of $G,H$ resp.). Further properties of ${M_0}(G)$ for abelian or compact groups $G$ are derived.References
- N. Bourbaki, General topology. Part 1, Hermann, Paris; Addison-Wesley, Reading, Mass., 1966. MR 34 #5044a.
- Charles F. Dunkl, Operators and harmonic analysis on the sphere, Trans. Amer. Math. Soc. 125 (1966), 250–263. MR 203371, DOI 10.1090/S0002-9947-1966-0203371-9
- Charles F. Dunkl and Donald E. Ramirez, Topics in harmonic analysis, The Appleton-Century Mathematics Series, Appleton-Century-Crofts [Meredith Corporation], New York, 1971. MR 0454515
- Charles F. Dunkl and Donald E. Ramirez, Translation in measure algebras and the correspondence to Fourier transforms vanishing at infinity, Michigan Math. J. 17 (1970), 311–319. MR 283585
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- Paul R. Halmos, Lectures on ergodic theory, Chelsea Publishing Co., New York, 1960. MR 0111817
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Irving Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949), 105–112. MR 28317, DOI 10.4153/cjm-1949-011-9
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- L. S. Pontryagin, Topological groups, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. Translated from the second Russian edition by Arlen Brown. MR 0201557 M. Rajagopalan and B. Schreiber, Ergodic properties of automorphisms of a locally compact group. II (to appear).
- Alexandre Rajchman, Une classe de séries trigonométriques qui convergent presque partout vers zéro, Math. Ann. 101 (1929), no. 1, 686–700 (French). MR 1512561, DOI 10.1007/BF01454869
- Walter Rudin, Measure algebras on abelian groups, Bull. Amer. Math. Soc. 65 (1959), 227–247. MR 108689, DOI 10.1090/S0002-9904-1959-10322-0
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834 A. Weil, L’intégration dans les groupes topologiques et ses applications, 2nd ed., Hermann, Paris, 1951.
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 475-485
- MSC: Primary 22.20; Secondary 42.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0283129-7
- MathSciNet review: 0283129