Minimal convergence spaces
HTML articles powered by AMS MathViewer
- by D. C. Kent and G. D. Richardson
- Trans. Amer. Math. Soc. 160 (1971), 487-499
- DOI: https://doi.org/10.1090/S0002-9947-1971-0286063-1
- PDF | Request permission
Abstract:
We are primarily concerned with minimal ${\text {P}}$ convergence spaces, where ${\text {P}}$ is one of the following convergence space properties: Hausdorff, ${{\text {T}}_2}, \lambda$-regular, $\lambda$-Urysohn, and first countable, $\lambda$ an infinite cardinal number. Our conclusions usually resemble the corresponding topological results, but with some deviations ; for instance, a minimal Hausdorff convergence space is always compact, whereas a countable minimal regular convergence space need not be compact.References
- Manuel P. Berri, Minimal topological spaces, Trans. Amer. Math. Soc. 108 (1963), 97–105. MR 150724, DOI 10.1090/S0002-9947-1963-0150724-0
- Manuel P. Berri and R. H. Sorgenfrey, Minimal regular spaces, Proc. Amer. Math. Soc. 14 (1963), 454–458. MR 152978, DOI 10.1090/S0002-9939-1963-0152978-9
- H. J. Biesterfeldt Jr., Regular convergence spaces, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math. 28 (1966), 605–607. MR 0205215, DOI 10.1016/S1385-7258(66)50065-8
- C. H. Cook and H. R. Fischer, Regular convergence spaces, Math. Ann. 174 (1967), 1–7. MR 230274, DOI 10.1007/BF01363119
- H. R. Fischer, Limesräume, Math. Ann. 137 (1959), 269–303 (German). MR 109339, DOI 10.1007/BF01360965 B. V. Hearsey, On extending regularity and other topological properties to convergence spaces, Ph.D. Dissertation, Washington State University, Pullman, Washington, 1968.
- Horst Herrlich, $T_{v}$-Abgeschlossenheit und $T_{v}$-Minimalität, Math. Z. 88 (1965), 285–294 (German). MR 184191, DOI 10.1007/BF01111687
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- D. C. Kent, Convergence quotient maps, Fund. Math. 65 (1969), 197–205. MR 250258, DOI 10.4064/fm-65-2-197-205
- D. C. Kent, Decisive convergence spaces, Fréchet spaces and sequential spaces, Rocky Mountain J. Math. 1 (1971), no. 2, 367–374. MR 276916, DOI 10.1216/RMJ-1971-1-2-367
- G. D. Richardson, A Stone-Čech compactification for limit spaces, Proc. Amer. Math. Soc. 25 (1970), 403–404. MR 256336, DOI 10.1090/S0002-9939-1970-0256336-1
- C. T. Scarborough, Minimal Urysohn spaces, Pacific J. Math. 27 (1968), 611–617. MR 238254, DOI 10.2140/pjm.1968.27.611
- C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131–147. MR 203679, DOI 10.1090/S0002-9947-1966-0203679-7
- R. M. Stephenson Jr., A countable minimal Urysohn space is compact, Proc. Amer. Math. Soc. 22 (1969), 625–626. MR 244942, DOI 10.1090/S0002-9939-1969-0244942-1
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 487-499
- MSC: Primary 54.22
- DOI: https://doi.org/10.1090/S0002-9947-1971-0286063-1
- MathSciNet review: 0286063