Finitely generated nilpotent groups with isomorphic finite quotients
HTML articles powered by AMS MathViewer
- by P. F. Pickel
- Trans. Amer. Math. Soc. 160 (1971), 327-341
- DOI: https://doi.org/10.1090/S0002-9947-1971-0291287-3
- PDF | Request permission
Abstract:
Let $\mathcal {F}(G)$ denote the set of isomorphism classes of finite homomorphic images of a group $G$. We say that groups $G$ and $H$ have isomorphic finite quotients if $\mathcal {F}(G) = \mathcal {F}(H)$. In this paper we show that if $G$ is a finitely generated nilpotent group, the finitely generated nilpotent groups $H$ for which $\mathcal {F}(G) = \mathcal {F}(H)$) lie in only finitely many isomorphism classes. This is done using some finiteness results from the theory of algebraic groups along with some heretofore unpublished results of A. Borel.References
- Louis Auslander and Gilbert Baumslag, Automorphism groups of finitely generated nilpotent groups, Bull. Amer. Math. Soc. 73 (1967), 716–717. MR 217168, DOI 10.1090/S0002-9904-1967-11841-X
- Gilbert Baumslag, Lecture notes on nilpotent groups, Regional Conference Series in Mathematics, No. 2, American Mathematical Society, Providence, R.I., 1971. MR 0283082
- Norman Blackburn, Conjugacy in nilpotent groups, Proc. Amer. Math. Soc. 16 (1965), 143–148. MR 172925, DOI 10.1090/S0002-9939-1965-0172925-5
- Armand Borel, Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math. 16 (1963), 5–30. MR 202718, DOI 10.1007/BF02684289
- A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111–164 (French). MR 181643, DOI 10.1007/BF02566948
- K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29–62. MR 87652, DOI 10.1112/plms/s3-7.1.29 P. Hall, Nilpotent groups, Canadian Mathematical Congress, Summer Seminar, University of Alberta, 1957. K. A. Hirsch, On infinite soluble groups. II, Proc. London Math. Soc. 44 (1938), 336-344.
- S. A. Jennings, The group ring of a class of infinite nilpotent groups, Canadian J. Math. 7 (1955), 169–187. MR 68540, DOI 10.4153/CJM-1955-022-5 A. G. Kuroš, The theory of groups. Vol. 2, GITTL, Moscow, 1953; English transl., Chelsea, New York, 1956. MR 15, 501; MR 18, 188.
- Roger C. Lyndon, Groups with parametric exponents, Trans. Amer. Math. Soc. 96 (1960), 518–533. MR 151502, DOI 10.1090/S0002-9947-1960-0151502-6
- A. I. Mal′cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9–32 (Russian). MR 0028842
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146–182. MR 181701, DOI 10.2307/1970567
- P. F. Pickel, Finitely generated nilpotent groups with isomorphic finite quotients, Bull. Amer. Math. Soc. 77 (1971), 216–219. MR 269739, DOI 10.1090/S0002-9904-1971-12687-3
- V. N. Remeslennikov, Conjugacy of subgroups in nilpotent groups, Algebra i Logika Sem. 6 (1967), no. 2, 61–76 (Russian, with English summary). MR 0218459
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 327-341
- MSC: Primary 20F05
- DOI: https://doi.org/10.1090/S0002-9947-1971-0291287-3
- MathSciNet review: 0291287