The addition theorem for the entropy of transformations of $G$-spaces
HTML articles powered by AMS MathViewer
- by R. K. Thomas
- Trans. Amer. Math. Soc. 160 (1971), 119-130
- DOI: https://doi.org/10.1090/S0002-9947-1971-0293064-6
- PDF | Request permission
Abstract:
For a measure-preserving transformation $T$ which is a skew-product of a measure-preserving transformation $S$ and a topological group endomorphism $\sigma$, it is shown that the entropy $h$ satisfies the following “addition theorem": $h(T) = h(S) + h(\sigma )$.References
- L. M. Abramov and V. A. Rohlin, Entropy of a skew product of mappings with invariant measure, Vestnik Leningrad. Univ. 17 (1962), no. 7, 5–13 (Russian, with English summary). MR 0140660
- S. A. Juzvinskiĭ, Metric properties of the endomorphisms of compact groups, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1295–1328 (Russian). MR 0194588
- V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3–56 (Russian). MR 0217258
- R. K. Thomas, Metric properties of transformations of $G$-spaces, Trans. Amer. Math. Soc. 160 (1971), 103–117. MR 293063, DOI 10.1090/S0002-9947-1971-0293063-4
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- V. A. Rohlin, Metric properties of endomorphisms of compact commutative groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 867–874 (Russian). MR 0168697
- William Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771. MR 260975, DOI 10.2307/2373350
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 119-130
- MSC: Primary 28A65
- DOI: https://doi.org/10.1090/S0002-9947-1971-0293064-6
- MathSciNet review: 0293064