A theorem and a counterexample in the theory of semigroups of nonlinear transformations
HTML articles powered by AMS MathViewer
- by Michael G. Crandall and Thomas M. Liggett
- Trans. Amer. Math. Soc. 160 (1971), 263-278
- DOI: https://doi.org/10.1090/S0002-9947-1971-0301592-X
- PDF | Request permission
Abstract:
This paper studies the basic method in current use for constructively obtaining a generator from a given semigroup of nonlinear transformations on a Banach space. The method is shown to succeed in real two-dimensional Banach spaces and to fail in a particular three-dimensional example. Other results of independent interest are obtained. For example, it is shown that the concepts of “maximal accretive” and “hyperaccretive” (equivalently, $m$-accretive or hypermaximal accretive) coincide in ${R^n}$ with the maximum norm.References
- H. Brezis and A. Pazy, Accretive sets and differential equations in Banach spaces, Israel J. Math. 8 (1970), 367–383. MR 275243, DOI 10.1007/BF02798683
- Felix E. Browder, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175 (1968), 89–113. MR 223942, DOI 10.1007/BF01418765
- M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298. MR 287357, DOI 10.2307/2373376
- J. R. Dorroh, Some classes of semi-groups of nonlinear transformations and their generators, J. Math. Soc. Japan 20 (1968), 437–455. MR 231241, DOI 10.2969/jmsj/02030437
- Samuel Eilenberg and Deane Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 214–222. MR 16676, DOI 10.2307/2371832
- B. Grünbaum, On a theorem of Kirszbraun, Bull. Res. Council Israel Sect. F 7 (1957/58), 129–132. MR 106423
- Tosio Kato, Note on the differentiability of nonlinear semigroups, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 91–94. MR 0270208
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- Yukio K\B{o}mura, Differentiability of nonlinear semigroups, J. Math. Soc. Japan 21 (1969), 375–402. MR 250118, DOI 10.2969/jmsj/02130375
- George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346. MR 169064
- J. W. Neuberger, An exponential formula for one-parameter semi-groups of nonlinear transformations, J. Math. Soc. Japan 18 (1966), 154–157. MR 200734, DOI 10.2969/jmsj/01820154
- Shinnosuke Ôharu, Note on the representation of semi-groups of non-linear operators, Proc. Japan Acad. 42 (1966), 1149–1154. MR 220100
- R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 193–254. MR 104919, DOI 10.1090/S0002-9947-1959-0104919-1
- Sten Olof Schönbeck, On the extension of Lipschitz maps, Ark. Mat. 7 (1967), 201–209 (1967). MR 241962, DOI 10.1007/BF02591628
- G. F. Webb, Representation of semi-groups of nonlinear nonexpansive transformations in Banach spaces, J. Math. Mech. 19 (1969/1970), 159–170. MR 0247528, DOI 10.1512/iumj.1970.19.19016
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 263-278
- MSC: Primary 47H99; Secondary 47D05
- DOI: https://doi.org/10.1090/S0002-9947-1971-0301592-X
- MathSciNet review: 0301592