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IDENTITIES INVOLVING THE COEFFICIENTS

OF A CLASS OF DIRICHLET SERIES. V

BY

BRUCE C. BERNDTO

Abstract. We derive various forms of the Voronoï summation formula for a large

class of arithmetical functions. These arithmetical functions are generated by

Dirichlet series satisfying a functional equation with certain gamma factors. Using

our theorems, we establish several arithmetical identities.

1. Introduction. Let / be of bounded variation on [a, b]. Then the Poisson

summation formula

\ 2' {/(" + 0)+/(«-0)} - f /(x) ox + 2 |   f7(x) cos (2-nnx) dx
¿n=a Ja n=l Ja

is valid, where the ' indicates that when n = a only the term if(a + 0) is counted and

when n = b only the term \f(b — 0) is counted.

In 1904, Voronoï [30] made the following conjecture which can be regarded as a

generalization of the Poisson formula. Let a(n) be an arithmetical function and

let/be continuous on (a, b) with only a finite number of maxima and minima on

(a, b). Then there exist analytic functions 8(x) and a(x), depending only on a(n)

and not on/(x), such that

2'   a(n)f(n) = Cf(x)8(x) dx+ J a(n) f f(x)a(nx) dx,
a^n^b Ja n=l Ja

where the ' has the same meaning as above. If a(n) = 1, the conjecture is true, for

by Poisson's formula we can take S(x)=l and a(x) = 2 cos (2ttx). Voronoï was

able to establish his conjecture for the divisor function d(n) when 0<a<¿z<oo.

In this case, 8(x) = log x + 2y, where y denotes Euler's constant, and a(x)

= 4Ar0(47rx1'2) —27rT0(47rx1'2), where K0 and Y0 are the Bessel functions usually so

denoted. In 1929, Koshliakov [23] gave a considerably shorter proof of Voronoï's

formula, but with the assumption that/be analytic. Dixon and Ferrar [9] in 1931

gave a still shorter proof with the hypothesis that/e Ci2)[a, b]. In 1932, Wilton [34]

proved the Voronoï formula under the assumption that / be of bounded variation
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on [a, b]. He also extended the formula to include the cases ö = 0 and b = oo. A

further refinement for the case a = 0 was later made by Dixon and Ferrar [12].

The case a(n) = r2(n), the number of representations of« as the sum of two squares,

has also been given considerable attention. Voronoï [31] was also the first to give a

formula in this case. Here 8(x) = tt and a(x) = TrJ0(2-rrx112), where 70 denotes the

usual Bessel function. Vorono'i's formula was also given by Sierpiñski [28]. Landau

[24] has established the formula when / is of bounded variation on [a, b],

0^a<b«x>. The extension to è = oo was made by Dixon and Ferrar [10].

The Voronoï conjecture has been established for several other arithmetical

functions. In the derivation of these formulae, one usually first establishes an

identity for 2ns* ain) m terms of an infinite series of Bessel functions. A second

observation is that, for every Voronoï summation formula that has been estab-

lished, the arithmetical function a(ri) is generated by a Dirichlet series satisfying a

functional equation with gamma factors. Our objective is to develop general

Voronoï summation formulae for arithmetical functions satisfying the afore-

mentioned two properties.

A survey of all of the established results indicates that the hypotheses under

which the Voronoï formula has been proved generally fall in three classes. First,

/is "smooth", i.e.,/e Ca)[a, b] or C(2)[a, b]. In §3 we prove general theorems for

such functions. Secondly,/is of bounded variation on [a, b]. In §4 we establish the

Voronoï formula for such / Our results here are not as complete as for the first

class because of the difficulty caused by a = 0.

Lastly, a third approach uses the theory of functions in L2(0, oo) and the theory

of Mellin or Fourier or Hankel transforms. Such an approach was inaugurated

by Ferrar [13], [14] and Guinand [16], [17], [19]. With this approach a formula

for r2(n) is proved by Pearson [27] and one for d(n) by Nasim [26]. We do not

attempt to give a general theory using this approach. In fact, the aforementioned

papers of Ferrar and Guinand give general theorems.

Although general theorems have been established using transform techniques,

only a couple of attempts have been made to obtain general results for "smooth"

functions or for functions of bounded variation. The first general theorem was given

by Koshliakov [22] who assumed that {a(n)} is generated by an exponential series

satisfying a "theta-relation", and that/is analytic. A second general theorem is

given by us in [2] where it is assumed that the generating Dirichlet series satisfies a

functional equation with a simple gamma factor, i.e., Y(s), and that the series has

an analytic continuation which is entire or has at worst only one simple pole, that

at a certain specified point.

In the sequel we let s be complex with o= Re (s), and write 2 for 2"=i- A always

denotes a positive constant, not necessarily the same with each occurrence.

2. The arithmetical functions. Let {An} and {pn} be two sequences of positive

numbers strictly increasing to oo, and {a(n)} and {b(n)} two sequences of complex
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numbers not identically zero. Suppose that

<p(s) = 2 a(n)X~s   and   >i(s) = 2 b(n)p.ñs

each converge in some half-plane and have abscissae of absolute convergence a„

and a*, respectively. Let A(s) denote one of the following three gamma factors :

FCO» F(is)Y(%{s—p}), or Y2(%{s+l}), where p is an integer. Let r be, in the three

cases respectively, arbitrarily real, p +1, and 1. Then we say that <p and <l> satisfy

the functional equation A(s)<p(s) = A(r—s)tb(r—s) if there exists a meromorphic

function x with the following properties:

(i) x(i) = A(i)<p(j), a>oa, x(s) = A(r-s)>p(r-s), o<r-a*;

(ii) lim|Im(s)|-aœ v(j) = 0, uniformly in every interval —oo<a1^a^a2<oo;

(iii) the poles of y are confined to some compact set.

For such arithmetical functions Chandrasekharan and Narasimhan [6], [7]

have established fundamental identities involving Bessel functions. See also [3]

and [5]. Let a be a nonnegative integer and x>0. Define

1

A"^ = rv„ j. n 2' a(n)(x - A")a.
1 V9 T   1) hnix

where the ' indicates that if q = 0 and An = x, a(n) is to be multiplied by ^.

Define also

0(Y) = _L.f     r(*M*)   xs+act
U*{X)      2mlY(s+q+l)X      *',!c, Y(s+q+l)-

where Cq is a cycle enclosing all of the integrand's poles. Furthermore, define

(2.1) Dq(x) = Aq(x)-Qq(x).

Suppose that for a > a*,

sup
oszisi

2 b(ri)pAn'2-°= 0(1)

as m tends to co. Then, for q>2a* — r—3/2,

(2-2) bt(x) = 2^ JJtVc),
Pn

where in the three cases A(i) = r(i), Y(\s)Y(%{s-p}), and Y2(${s+1}) we have,

respectively,

Iq(x) = x«+»i2Jr+q(2x112),

= x("+i+1)/22-'{cos (M/' + lH^+5+1(4x1'2)

-sin (i{p+ lW[yp+g+1(4x1'2) + (2(- l)" + 9/-)^+,+ i(4^/2)]},

= x^+1"22-"{Yg+1(4xll2)+(2(- l)q+1l?r)Kq+1(4xil2)}.
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The series of Bessel functions in (2.2) converges uniformly on any interval in x > 0

where Ag(x)— Q„ix) is continuous. The series converges boundedly on any compact

interval in (0, oo) if q = 0.

Note that from standard differentiation formulae for Bessel functions we have

(2.3) /,'(*) = 75_1(x).

In the sequel we shall assume that (2.2) is valid for <7 = 0.

3. A Voronoï summation formula for "smooth" functions. The proofs of the

theorems in this section are very easy.

Theorem 1. Letfe C(1)(0, oo). 77ze«, z/0<a<A1 <x<oo,

(3.1)   2' 0(")/(An)=r &(o/(o dt+2 ̂ s r'-i(/v)/(o dt.
ZB5x Ja pn       Ja

Proof. By partial summation and (2.1),

X ain)fiXn) = A0ix)fix)- F' A0(t)f'(t) dt
Ani^ Ja

= {Qoix) + D0ix)}fix)- f{ß0(0 +A>(0}/'(0 dt.
Ja

Since D0it) converges boundedly on [a, x], we may invert the order of summation

and integration [29, p. 41] to obtain

i* {ßo(0+D0it)}f\t) dt = r ßo(0/'(0 dt+2 ¥r i* 7oO*»OAO dt.
Ja Ja H'n    Ja

The integral involving ß0(0 clearly exists because of assumption (iii). Integrating

by parts with the aid of (2.3), we obtain

2' <n)fiK)= {Qoia) + D0ia)}f(a)+ f (20(0/(0 dt + 2 TtS ("*-iMñO dt.
Án£x Ja rn       Ja

But a<Xy, and so Q0(a) + D0(a) = A0(a)=0. Thus, the proof is complete.

The inversion in order of summation and integration above is not necessarily

justified if a = 0. In Corollary 8 we shall state some conditions that insure the

bounded convergence of D0(t) on O^r^x in the case A(a) = T(í). The following

theorem is clear from the proof of Theorem 1.

Theorem 2. Let fe C(1)(0, oo). Suppose that 7>0(0)/(0)<oo and ¡* ß0(0/(0 dt

<oo. Furthermore, assume that 770(0 converges boundedly on O^r^x. Then (3.1)

is valid with a = 0.

We now prove two theorems which do not depend upon the bounded conver-

gence of 7»o(0 onOáí^x.

Theorem 3. Letfe C(l)[0, oo). Suppose that the poles ofyis) are in the half-plane

<7>0. Then (3.1) is valid with a=0.
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Proof. We shall show that letting a tend to 0 in Theorem 1 is justified by con-

tinuity considerations.

Since the poles of <p(s) lie in a>0,

Í Q'o(t)f(t) dt < oo.

Thus, the first term on the right-hand side of (3.1) is continuous at a = 0. Upon

an integration by parts, the second term on the right-hand side of (3.1) becomes

(3.2) D0(x)f(x)-D0(a)f(a)-£ D0(t)f'(t) dt,

where the inversion in order of summation and integration is justified as in the

proof of Theorem 3.1. A0(a) is clearly continuous at a = 0, and Q0(a) is continuous

at a = 0 by our assumption on the poles of <p. (3.2) is then continuous at a = 0, and

the proof is complete.

In some applications the above condition on/at the origin is too strong. In the

case A(i) = T(j) we are able to weaken this condition. Because Kv and Yv have

singularities at the origin, our proof is not valid for the other choices of A(s).

Theorem 4. Letfe C<2>(0, oo). Suppose that A(s) = Y(s) and that the poles of <p

lie in a>0. Assume that Q0(t)f(t) and Qi(t)f'(t) are continuous at t = 0. Lastly,

suppose that

iV/»+i/*i/»(r)i dt < ».
.'0

Then,

2  *(«)/(An)
(3.3) KSx

= \*Q'Át)At)dt+2 JS fV-»'Vr_1(2W}1/a)./WA.
Jo pn Jo

Proof. Proceed as in the proof of Theorem 3. From (3.2) and our hypotheses we

need only to examine

Z^\XIo(pnt)f'(t)dt.
Pn   Ja

Upon an integration by parts, the above becomes

(3.4) Dx(x)f'(x) - DMfXa) - 2 ^Tï f 'iOVÍAO dt.
Pn      Ja

Since Qi(a)f'(a) is continuous at a=0, it suffices to show that

(3-5) 2Äa ¡1t{T+1V2Jr+i(2{pnt}ll2)r(t)dt
P-n Jo

is absolutely convergent. For then the infinite series in (3.4) converges uniformly

on O^a^ 1 and hence is a continuous function of a on [0, 1].
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We divide the interval of integration in (3.5) into [0, l/pn] and [l/pn, 1]. Since

7v(i) = 0(xv) as x tends to 0, the integral over [0, l/pn] is less than in modulus

(3.6) ApV™2 f1/*"rr+1l/'(OI * Ú Ap~^ (*"" r'3+1'*|/"(0| dt.
Jo Jo

Since 7v(x) = 0(x-1'2) as x tends to oo, the modulus of the integral over [l/pn, I] is

less than

(3.7) ^Pn1/4f    ir,2 + 1/4|/"(0l dt.

Now, since (2.2) is valid for #=0, we must have 0>2o*-r—3/2 or r/2 + 3/4>a*.

Hence, from (3.6) and (3.7) the modulus of (3.5) is less than

A2ßeL\1t"2+lli\f'V)\dt
pn JO

< 00,

and the proof of (3.3) is complete.

Of course, by subtraction a Voronoï formula may be given over any finite interval

[a, b], a ^ 0, from the above results. We now wish to replace x by oo in these

theorems.

Theorem 5. Letfe C(2)(0, oo). Suppose that 7)0(x)/(x) and xr'2 + 1,4/'(x) tend to

0 as x tends to oo. Assume that, for x>0,

i
trl2 + 1'i\f"it)\ dt < oo.

Then, ifO<a<Xy,

lim ( 2' ain)fiXn)-¡XQ'0it)fit)dt) = 2^S CI-yipnt)fiO dt,
x~*ao \A„zx Ja 1 pn      Ja

provided that the limit on the left side exists.

By assuming in addition either the hypotheses of Theorems 2, 3, or 4 we may let

a = 0 in Theorem 5. To determine if 7>0(x)/(x) tends to 0 as x tends to oo, we may

consult a general theorem of Chandrasekharan and Narasimhan [7, Theorem 4.1].

Proof. It is sufficient to show that

2%ár i-Apnt)fit)dt
Fn      Jx

tends to 0 as x tends to oo. The above becomes, after an integration by parts,

(3.8) 7>o(0/(OI? - 2 ^r Í °° hMf\t) dt.
P'n   Jx

The integration by parts is valid, and the integrated term tends to 0 as x tends to oo,

because of our hypothesis on 7)0(x)/(x). After another integration by parts, the

series in (3.8) becomes

(3.9) A(()/'«l"-ll f °°/i(PnO/"(0 dt.
Pn       Jx
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Now, I1(x) = 0(xTl2 + lli) as x tends to oo. Hence,

(3.10) D,(x) = o(x«2 + * 2 JSjï) = W2 + "*)
\ Pn I

as x tends to oo, since r/2 + 3/4>a*. Hence, the last integration by parts is valid,

and the integrated term tends to 0 as x tends to oo, because of our hypothesis on

xr'2 + Vif'(x). Using the above estimate for h(x), we find that the modulus of the

infinite series in (3.9) is less than

\b(n)\   <"

Pn"
¿Z^&r tr'2+1,i\r(t)\dt = 0(1)

t^n Jx

as x tends to oo, since both the series and integral converge.

4. A Voronoï summation formula for functions of bounded variation.

Theorem 6. Let f be of bounded variation on [a, x], where 0<a<A1<x<oo.

Then,

2  2' tf(«){/(An + 0)+/(An-0)}

(4.1)
A„Sx

= iXQo(t)f(t)dt+2^ ¡"i-iMAO*.
Ja pn      Ja

Proof. The proof follows along the same lines as Landau's proof for a(n) = r2(n)

[24, Satz 559]. We shall only indicate those details which differ from Landau's.

As in [24], it suffices to show that

(4.2) 2 fS ['i-iMfXt) dt+ f Q'o(t)f(t) dt = 0,
P'n      Ja Ja

where either

(4.3)
a = Xk < ß < Xk+1, and / is monotonically

increasing on [Xk, ß] with/(Afc + 0) = 0,

or

(4.4)
Xk < a < Xk+1 = ß,  and / is monotonically

increasing on  [a, Xk+1] with/(Afc+1 — 0) = 0.

We shall prove (4.2) in the case (4.3). The proof for the case (4.4) is similar.

Now, Z>o(0 converges boundedly on [Afc, ß]. Thus, there exists a number M, >0,

depending upon the interval, such that, for Xk^t^ß and every m>0,

(4.5) Z ~y- WnO
n=l   P'n

< Mx.

Since Ôo(0 is continuous, there exists a number M2>0 such that, for Xk^t^ß,

(4.6) \Qo(t)\<M2.
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Let e>0 be given. Choose 8>0 such that Xk + 8<ß and

(4.7) 7TA + S) < e/SM,

where M=sup (A/1( M2). Applying the second mean value theorem for integrals

[29, p. 380], we find that

f i 2 ^T /-iM+ßMoW)dt
J\k   Vn = lP-n )

(4.8) = ( f *+ + f    ) i 2 5?i I-APnt) + Qoit))fit) dt
\J\k Jhk + 6/   ^n=l r*n J

= (ñh + 8) fk+ +/(/3-0) f    ){ 2 ^ /-iW)+ ßo(0) A,
\ Ji^m) J(2(m)/ U=lpn J

where Afc 5¡ ¿^(/w) ̂  Afc + oá;j2(/7i)^p\ Upon integration and the use of (4.5)-(4.7),

we have

(4.9) fiK + 8) j 2 ^T /- iW) + ßo(0 \dt\< e(2My + 2M2)/%M g e/2.
Ji!(m)    U=l/Z» J

Now, 7>o(0 converges uniformly on [Ak+ S, /3], for [Afc+ 6, /3] contains no members

of {A„}. Clearly then, we can choose m large enough so that

(4.10) /(/3-0)Í2 ^rIoipnt)+Qoit)Y < e/2., 70(p„o+ßo(o!i
U = 1   Pn ) (2(m)

Using (4.9) and (4.10), we find from (4.8) that, for m large enough,

v Kn) f*2-^îi   I-ApJ)fit)dt+[   Qoit)fit)dt
i = l Pn       J\k J*k

< s,

from which (4.2) follows.

We now wish to extend the previous theorem to a = 0. It is clear that we can use

the same argument as in the above proof if ß0(0 is continuous at t = 0 and if we

can show that 7>0(0 converges boundedly on O^i^x. Again, the Bessel functions

Kv and Yv cause difficulty because of their singularities at the origin. Thus, we

consider only the case A(í) = T(j). In order to show the desired bounded con-

vergence, we must derive an identity which is a generalization of a theorem of

Landau [24, Satz 523] and of Theorem 2 in [2]. Our somewhat different proof

enables us to establish the generalization.

We first state some properties of 7„(x) that we shall need. For v > 0 and a > 0

[32, p. 406],

(4.11)

/*00

J,-yiat)J,it)dt = a"-1,       a < 1,
Jo

= i,

= 0,

a=\,

a > 1.
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For arbitrary v [32, p. 45],

(4.12) (d/dx){x-vJv(x)} = -x-Vv+1(x).

Instead of introducing additional notation, we keep the same notation, Aq(x),

Qq(x) and Dq(x), although the roles of q> and <j> are reversed, in the following

theorem.

Theorem 7. Let A(s) = Y(s). Suppose that r> — 2 and that the poles of ^ lie in

the half-plane a > 0. Then, for x ̂  0 and y>0,

2   ̂ W'WW}1'2)
»nS«

= 2' «(»)-2 «(«KW*1"8 r jr+i(t{Kixvi2)jr+2(t) dt
Á,S¡t a/»*!/)1'2

(4 13) + (xlyr + 1)l2Jr+í(2{xyy'2)D1(y) + (xlyy'2Jr(2{xyy'2)D0(y)

-(xlty%(2{xt}ll2)D0(t)\t = 0

+j\xlty2Jr(2{xtV2)Q'0(t)dt.

The hypothesis concerning the poles is needed for technical reasons which are

pointed out in the proof.

Proof. By (4.11) for r> -2,

2' a(n) = 2«(«)(*/An)(r + 1)'2 f Jr+1(t{KlxVl2)Jr+2(t) dt
A„Sx Jo

(4.14) =2«(«)WAJ(r + 1,/2

+ )Jr+MKIx}ll2)Jr+2(t)dt.
0 J 2(X!/>1<2 /

Replacing t by (2x/)1/2 in the first integral on the right-hand side of (4.14), we

obtain

2 a(«)(x/An)^"'2 Jo Jr+MXnlx}il2)Jr+2(t) dt

(4.15) = Jo!,(x/01 + r/2/r+2(2{x01/2) 2 a(n)(tlXnr + 1)l2JT+i(2{Xnt}il2) dt

= ^(xity^j^Qixty^D^t) dt,

where the inversion in order of summation and integration is justified since Dy(t)

converges absolutely. Upon an integration by parts with the aid of (4.12), the above

integral becomes

(4.16) -(xjyY ♦ »>2JT+ 1(2{xyy>2)D1(y) +£(x¡tf + »>2Jr+ 1(2{x/}1'2)/J0(0 dt,



148 BRUCE C. BERNDT [October

since T>j(0) = 0, as the poles of </j(s) are in <r>0. Upon a similar integration by

parts, this last integral becomes

- ix/yr2Jri2{xyY'2)D0iy) + (x/Or/Vf(2{jc/}1's0A>(O|t-o

(4.17)
+ r(x/Or,27r(2{x01,2)^o(0-

Note that T>0(0) is finite since the poles of \/> lie in the right half-plane. The integral

in (4.17) can be written as

r(x/Or'2Jr(2{x01/2){¿4o(0- ßo(0 dt)

(4-18)
=  2 '3(«)(x/pn)"27r(2{pnx}1'2)-i!/(x/Or,27r(2{x01/2)ßo(0^

»,Sï Jo

Combining (4.14)-(4.18), we arrive at (4.13).

Corollary 8. 7« addition to the notation and hypotheses of Theorem 1, suppose

that räO and that 7)0(x) = 0(xr'2) as x tends to oo. Then,

1bin)ix/pny>2jri2{pnxY>2)

converges boundedly on any compact interval in x^O.

Proof. In view of Theorem 7, we only need to show that all expressions on the

right-hand side of (4.13) are 0(1) as y tends to oo. Also, in view of the theorem of

Chandrasekharan and Narasimhan stated in §2, we may assume that O^x^e,

where e>0 is fixed.

The first expression is obviously O(l). The second term is shown to be 0(1) in

[2]. From (3.10), Dyiy) = Oiyrl2 + lli) as y tends to oo. Since r^O, 7r+1(2{xjz}1'2) is

bounded for all xj>^0. It follows that the third term is 0(1). Since r^O, Jri2{xy}112)

is bounded. Since also 7>0(j) = O(jr/2), we see that the fourth term is O(l). The

fifth term is clearly O(l).

Lastly, we consider the integral. It will be sufficient to show that

(4.19) ^ t-"2Jri2{xt}ll2)Q'oit) dt
Ja

converges, where a>0. Since <f> has only poles, ß0(0 is a finite sum of products of

powers of t and of log t. For / large, the largest term will be no greater than a

multiple of t"'a logk t for some nonnegative integer k. Now, as t tends to oo [32,

p. 199],

7V(0 = icye'+c^-^r^+ic^+c^-^r^+Oit-^2),

where clt..., c4 are constants. Thus, (4.19) converges if and only if

30

eltt2„'a-r-3l2 fege t ¿t

i



1971] COEFFICIENTS OF A CLASS OF DIRICHLET SERIES. V 149

converges. But since 2a* — r—3/2 <0, the above integral converges. Hence, the

last term on the right-hand side of (4.13) is 0(1) as y tends to oo, and the proof is

complete.

In light of our comments after Theorem 6, we now have

Theorem 9. Suppose that the poles of ¡p(s) are in the half-plane a > 0. Under the

hypotheses of Theorem 6 and Corollary 8, (4.1) is valid with a = 0.

We now wish to extend Theorem 6 by letting x = oo.

Theorem 10. Let f be of bounded variation on [a, x]for every x,0<a<X1<x<co,

and suppose that fis the integral off. Assume that D0(x)f(x) tends to 0 as x tends

toco,

(4.20) fV° + £~1,2l/"(0l dt < oo
Jx

for some e > 0, and

(4.21) f D0(t)f'(t) dt < oo.
Jx

Then,

lim U 2' a(n){f(Xn+0)+f(Xn-0)}- f Q'0(t)f(t) dt)
(A 00\ x-*w   \   An£x Ja I

=  2 Tß\      I-l(Pnt)f(t)dt,
pn       Ja

provided that the series on the right-hand side converges.

Proof. We proceed as at the beginning of the proof of Theorem 5. After an

integration by parts, we see that it is sufficient to show that

2^r/o(/v)/'(o*
Pn   Jx

tends to 0 as x tends to oo.

Write the above as

( 2 + 2 ) ̂ r T'o^nOAO * = si+s*>
\i*nSx   mn>xl   Pn   Jx

say. In the sum Si, pn^t. Since also a*^r/2 + l/4 [7, p. Ill],

M** 2 4sr^-i/4i/'(oi*
«nS* Pn Jx

=^2 l-^r t''+'-iia\fv)\dt=t*»
unâx ^n Jx

as x tends to oo, by (4.20).
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To estimate S2 we regard x as fixed for the moment. Since the series on the

right-hand side of (4.22) converges, given s > 0, there exists an x0 such that, for

2 b-^r ioipnt)fit)dt
«„>*'   Pn   Jx

<   E.

If x0^x, in particular we can take x'=x. Thus, \S2\ <e, and we are done. If x0>x,

there remains to estimate

2 b-^rioipnt)fit)dt= 2 ^(r+n70(pno/'(o^=s3+s4,
x<u„Sxo   Pn   Jx x<Unâxo Pn    \Jx       Ju„/

say. S4 is estimated in the same way as Sy, and we easily obtain

m ^ a 2 ^t! r t°°+E-m\f'it)\ dt=0(d
Hn>X Pn"        Jx

as x tends to oo. Now,

S3=   f°2   b-^IoiPnt)f'it)dt
Jx    «nSt   P'n

= ríD0it)- 2 b-^ioi^t)\f'it)dt.
Jx     V «„<f Pn J

By (4.21), the integral involving T)„(0 is o(l) as x tends to oo. Now,

(4.23)

2^'oW)
un<t Pn

< Atria-m  y    [i^O)
= Al ¿j   „r/2 + 1/4  =

<   ¿fCa + e-112

Un < t Pn

by partial summation. Thus, by (4.20), the integral of the sum on the right-hand

side of (4.23) is o(l) as x tends to oo. This completes the proof.

5. Additional remarks on the theorems. We remark that Wilton [34] has stated

a theorem similar to Theorem 10 when ain)=din). The difference in the two

theorems is that Wilton has the assumption that/(x) tends to 0, while we have the

hypothesis that D0(x)f(x) tends to 0 as x tends to oo. Dixon and Ferrar [12]

restate Wilton's theorem with the hypothesis that x1,2+e/(x) tends to 0 as x tends

to oo for some e > 0. In a footnote they remark that "... his (Wilton's) statement

seems, to us, to contain a misprint". Since Do(x) = 0(x*) for some 6, l/4<0<l/3,

our hypothesis lies "between" those of Wilton and Dixon and Ferrar.

The key to proving Theorem 9 is identity (4.13). Wilton [33] has proven a similar,

but even more complicated, identity when A(5) = r2(|i) and a(n)=d(n). This

identity was the essential ingredient in extending the Voronoï formula to a = 0

in [34].

We have indicated several references to the literature for summation formulae

involving din) and r2in). We indicate a few additional arithmetical functions that

are covered by our theorems and have been discussed in the literature. Let {A„}
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be the values assumed by a positive definite quadratic form in two variables.

Voronoï [31] first gave the summation formulae here. It is also proved in [22] and

[2]. Let {a(n)} be the coefficients of a modular cusp form of negative dimension.

Then results are given in [22], [14], [20] and [2]. Let a(n) = F(n), the ideal function

for a quadratic number field K. If K is imaginary, results are given in [22], [8] and

[2]. If K is real, results are given in [8]. We remark that the proof of Theorem 3

in [8], when K is real, is not correct, because the estimate I1(t) = 0(t3'2) as t tends

to 0, given on p. 308, is false.

We have not discussed here Voronoï summation formulae where the infinite

series do not converge in the ordinary sense, but are summable by Riesz means

[10], [11], [18] and [25]. In particular, such formulae arise when (2.2) does not hold

for a = 0. It would be desirable to have convergent Voronoï type summation for-

mulae for such arithmetical functions. One might hope then to find a general

formula for 2a„¿x a(n)f(A„)(x—An)5 for suitable q>0, but no such formula appears

to have been discovered.

6. Applications. Wilton [35] has given some applications of the Voronoï

formula in estimating sums of the form 2ns* d(n)f(n). Several authors have

derived arithmetical identities by using particular examples of f(x). We give

several identities here in the case A(í) = T(j). As is to be expected, several of our

identities hold in a more general setting. For each example we refer to theorems

which insure the validity of our application, but in each case there is more than one

choice of theorems possible.

We shall need the values of several integrals.

For a,p>0 and v> - 1 [32, p. 394],

(6.1) j" r + Vv(aO exp (-p2t2) dt - ^n exp (^).

For a, 6>0 and v> -1 [32, p. 386],

For a, b>0 and v> -\ [32, p. 386],

(6-3) [ t*Ubt)e-«i dt = (j2+y+^1/2-

For Re/x>|Rea-| [32, p. 388],

(6.4) f " t*-*K,(t) dt = 2"-2Y(i{p-V})Y(Up+v}).
Jo

For a, b, Re p. > 0 and v > -1 [32, p. 410],

(UK P K(ntM(ht\t^^rIt     (2aY(2byY(p. + v+l)
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For a>0, z real, Re p> — 1, and v complex [32, p. 417],

r KMf + z^) 2»Yjp+l)
(6-6) J0       (t2 + z2)"'2 = gM + V-»-1 Kv-"-l(-ai)-

For a,b>0, z^O and real, p> — 1, and v complex [32, p. 416],

f°° K (aU2 + z2Y12)JAbñ  AY   J: L ' ttt+1 dt
(6.7) Jo    Á   '     it2 + z2T2     %      di

= ib"/av)i{a2 + b2Yl2/zy -"- %-*. y(z{a2 + b2}1'2).

For a, b,p>0 and v> -1 [32, p. 395],

(6.8) £° exp (-p2í2)7v(a07v(¿>0í dt = ^ exp (-^+*!)/,(|* ),

where here 7V is the Bessel function defined in [32, p. 77]. For a, b>0, n>0 and

integral, and n + v> — 1 [15, p. 721],

(6.9) ¡°° tn + vl2e~atJv(2bt112) dt = «!¿>v exp (-b2/a)a-n-"-1Lnv\b2/ä),
Jo

where 7.cnv)(x) is the Laguerre polynomial defined by [15, p. 1037]

Ln\x) = —{ exx-\dn/dxn)(e-xxn + v).

Example 1. hetfit) = e~ty, y>0. Assume the hypotheses of Theorems 3 and

5. An easy calculation gives

£ Q'oit)e-* dt = ¿£  Y(s)9(s)y-° ds = P(y),

say. Replacing t by r2 in the second expression on the right side of (3.1) and using

(6.1), we have, for r>0,

f I.yip^e-* dt = p;-1 exp i-pn/y)/yr.
Jo

Thus, we have the "modular relation"

2 airi)e-^y = y-' 2 bin) exp i-pJy)+Piy),

which is, in fact, equivalent to the functional equation [6, Theorem 1].

Example 2. Let/(0 = exp (-r1,2y), y>0. Assume the hypotheses of Theorems

2, 5 and 7 and Corollary 8. Using the same substitution as in Example 1, we have

by (6.2), forr>0,

[l_yipnt)^i-tv2y)dt = ¿f4lfZ%
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Thus, we have the following identity that has been very useful in obtaining Í2-

results for the average order of certain arithmetical functions :

Za(n)exp(-Xn>2y)

(6-10) =1{   Y(2s)<p(s)y-2°ds + 4ryr(r+»y_*W_
iri)Con¿SMS)y     as+     ^>2      Z(y2 + 4p.ny^'2

This identity was first discovered by Hardy for the special cases r2(n) and r(n),

Ramanujan's arithmetical function (see the examples in [6]). Hamburger [21]

derived a special case of (6.10) when r=y. A more general identity is given in

[6, Lemma 6].

Example 3. Let /(0 = z,~1/2exp(-z'1/2}'), y>0. This next identity can be ob-

tained by formally integrating (6.10). However, if we assume the hypotheses of

Theorems 2, 5 and 7 and Corollary 8, we have upon the use of (6.3), for r>\,

2a(«)A-1'2exp(-Ai'2^)

Example 4. Let f(t) = log" (xjt), where a is a positive integer. Assume the

hypotheses of Theorems 2 and 7 and Corollary 8. Upon q integrations by parts,

I" ßo(0 log" (xlt) dt -   ¿   f   T^fds = q\R(x;q),
Jo 2m  Jo0  sq + l

say. Replacing t by 2(pnt)112 and integrating by parts once with the use of the

formula [32, p. 45], (o'/ax){xv/v(x)}=xVv_1(x), we find that, for r>0,

r(i,no(r-i>/2/-1(2W}i'2)iog'wo* = — iV-vxoiog"-^^^,
Jo Pn    Jo

where ¿¡ = 2(pnx)112. We thus have

, 2' a(n) log9 (x¡Xn) = R(x; q) + ̂ -^ 2 ^T Í V" Vr(0 log8"1 (Ht) dt,
• A„ii \q~ U! Pn   Jo

an identity proved by us in [4, Theorem 3].

Example 5. Let f(t) = t(s-r)l2Ks_r(2{ty}112), where a>r and y>0. Assume the

hypotheses of Theorems 2 and 10. With the use of (6.4), a straightforward calcula-

tion using the same substitution as in Theorem 1 yields

j    Q'o(tVs-rWKs.r(2{ty}112) dt = -jL t   Y(z)Y(z + s-r)<p(z)y-*-«-™ dz.

With the use of (6.5), we obtain, for r>0,

JJ/-iW)/(0^ = - -la^-r^IXO

2(pn+y)s



154 BRUCE C. BERNDT [October

We thus obtain for o>r,

r^) 2 rrîv = 2 2 a(n)(Xn/yy-™Ks_T(2{XnyY'2)
(6.11) (^n+y)

"¿¡■I ^w^s-r^y2'3*' dz.
Jc0

With the roles of <p and </> reversed, this identity for the "generalized" Dirichlet

series on the left was first given by us in [1]. Another proof is given in [5]. An

equivalent identity when a(n) = r2(ri) is given in [10]. (6.11) may be used to give an

analytic continuation of the "generalized" Dirichlet series.

Example 6. Let f(t) = (bl(t+a))v'2Kv(2{(t+a)bY12), where a, b>0 and v is

arbitrary. Assume the hypotheses of Theorems 3 and 10. Replacing t by r2 and

using (6.6), we have

Í" Q'oiOfiOdt = |L f   Y(s)<pis)ib/ay-»l2Kv_s(2{aby12) = U(a, b),

say. By (6.7) for r>0,

j*I-y(pnt)f(t)dt = pn-\ipn + b)/ay-™K^T(2{(Pn + b)ayi2).

Since 7i"v(z) = AT_v(z), we thus obtain

2 a(n)ib/iXn + a)y'2Kv(2{(Xn + aW>2)

= U(a, b) + 2 bin)ia/ipn + b)Y ' ™2Kr _ v(2{(pn + b)aY'2),

an identity obtained by us in [5, Theorem 9.1]. There, we did not evaluate U(a, b).

Example 7. Let /(í) = e-í!/^-<r"1)/27r_1(ar1,2),  where   a, r, y>0.   Assume   the

hypotheses of Theorems 2 and 10. By (6.8),

where Ir.1 is a Bessel function. Hence,

2 a(n) exp (-An>z)A-"-i»27r_1(aAi'2)

= f " Q'oit)e-tyt^r-1)l2Jr-yiatx<2) dt
(6.12) Jo

+J,-.24(»)=xp(-2^),,«-™;,.,(fif!).

an identity which appears to be new. Ordinarily, the integral in (6.12) cannot be

explicitly evaluated. However, if <p has at most one pole, that at s = r with residue p,

which is the case in most examples, the integral reduces to

(2Pa'-1/(2j)0exp(-a2/4>z),
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by (6.1). If, in addition, r = 1, (6.12) reduces to

y 2 a(ri) exp ( - Xny)J0(aXk12)

= pexp(-a2/4J) + 2K")exp(-^=)/o(^).

Example 8. Let f(t) = tme~ty, where y>0 and m is a positive integer. Assume

the hypotheses of Theorems 3 and 10. By (6.9) if w + r>0,

j" I-iMfe-» dt = m\p.n-1exp(-pinly)y-m-'LZ-1KPnly)-

Hence, we have

2a(/.)A"exp(-Anj)

= ¿Jc Y(s + m)<p(s)y-s-mds + m\y-m-'2b(n)exp(-p.nly)L<in-u(p.Jy),

an identity we derived in [5, Theorem 10.1].
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