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IDENTITIES INVOLVING THE COEFFICIENTS
OF A CLASS OF DIRICHLET SERIES. V

BY
BRUCE C. BERNDT(})

Abstract. We derive various forms of the Voronoi summation formula for a large
class of arithmetical functions. These arithmetical functions are generated by
Dirichlet series satisfying a functional equation with certain gamma factors. Using
our theorems, we establish several arithmetical identities.

1. Introduction. Let f be of bounded variation on [a, b]. Then the Poisson
summation formula

S {f(n+0) +f(n—0)} = j f0) dx+2 2 f " f(x) cos (2mnx) dx

N -

is valid, where the ' indicates that when n=a only the term 4 f(a+0) is counted and
when n=> only the term 4f(b—0) is counted.

In 1904, Voronoi [30] made the following conjecture which can be regarded as a
generalization of the Poisson formula. Let a(n) be an arithmetical function and
let £ be continuous on (a, b) with only a finite number of maxima and minima on
(a, b). Then there exist analytic functions 8(x) and «(x), depending only on a(n)
and not on f(x), such that

b L b
> alfn) = [ 160800 de+ 3, a) [ Fxlatnx) d
where the ' has the same meaning as above. If a(n)=1, the conjecture is true, for
by Poisson’s formula we can take 8(x)=1 and «(x)=2 cos (2nx). Voronoi was
able to establish his conjecture for the divisor function d(n) when 0 <a <b <oo.
In this case, 8(x)=log x+2y, where y denotes Euler’s constant, and o(x)
=4Ky(4nx?)— 27 Y(4nx''?), where K, and Y, are the Bessel functions usually so
denoted. In 1929, Koshliakov [23] gave a considerably shorter proof of Voronoi’s
formula, but with the assumption that f be analytic. Dixon and Ferrar [9] in 1931
gave a still shorter proof with the hypothesis that f € C®[a, b]. In 1932, Wilton [34]
proved the Voronoi formula under the assumption that f be of bounded variation
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on [a, b]. He also extended the formula to include the cases a=0 and b=00. A
further refinement for the case a=0 was later made by Dixon and Ferrar [12].

The case a(n) = ry(n), the number of representations of n as the sum of two squares,
has also been given considerable attention. Voronoi [31] was also the first to give a
formula in this case. Here 8(x)== and a(x)=wJ,(27x'?), where J, denotes the
usual Bessel function. Voronoi’s formula was also given by Sierpinski [28]. Landau
[24] has established the formula when f is of bounded variation on [a, b],
0=<a<b<oo. The extension to b=00 was made by Dixon and Ferrar [10].

The Voronoi conjecture has been established for several other arithmetical
functions. In the derivation of these formulae, one usually first establishes an
identity for >, ., a(n) in terms of an infinite series of Bessel functions. A second
observation is that, for every Voronoi summation formula that has been estab-
lished, the arithmetical function a(n) is generated by a Dirichlet series satisfying a
functional equation with gamma factors. Our objective is to develop general
Voronoi summation formulae for arithmetical functions satisfying the afore-
mentioned two properties.

A survey of all of the established results indicates that the hypotheses under
which the Voronoi formula has been proved generally fall in three classes. First,
fis “smooth”, i.e., fe CP[a, b] or C®[a, b). In §3 we prove general theorems for
such functions. Secondly, fis of bounded variation on [a, b]. In §4 we establish the
Voronoi formula for such f. Our results here are not as complete as for the first
class because of the difficulty caused by a=0.

Lastly, a third approach uses the theory of functions in L2(0, c0) and the theory
of Mellin or Fourier or Hankel transforms. Such an approach was inaugurated
by Ferrar [13], [14] and Guinand [16], [17], [19]. With this approach a formula
for ry(n) is proved by Pearson [27] and one for d(n) by Nasim [26]. We do not
attempt to give a general theory using this approach. In fact, the aforementioned
papers of Ferrar and Guinand give general theorems.

Although general theorems have been established using transform techniques,
only a couple of attempts have been made to obtain general results for “smooth”
functions or for functions of bounded variation. The first general theorem was given
by Koshliakov [22] who assumed that {a(n)} is generated by an exponential series
satisfying a ““theta-relation”, and that f is analytic. A second general theorem is
given by us in [2] where it is assumed that the generating Dirichlet series satisfies a
functional equation with a simple gamma factor, i.e., I'(s), and that the series has
an analytic continuation which is entire or has at worst only one simple pole, that
at a certain specified point.

In the sequel we let s be complex with o=Re (s), and write >, for >2_;. 4 always
denotes a positive constant, not necessarily the same with each occurrence.

2. The arithmetical functions. Let {A,} and {u,} be two sequences of positive
numbers strictly increasing to co, and {a(n)} and {b(n)} two sequences of complex
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numbers not identically zero. Suppose that

o(s) = 2 amA;* and Y(s) = > b(mps*

each converge in some half-plane and have abscissae of absolute convergence o,
and o, respectively. Let A(s) denote one of the following three gamma factors:
I'(s), I'Gs)T'(G{s—p}), or I'*(3{s+1}), where p is an integer. Let r be, in the three
cases respectively, arbitrarily real, p+1, and 1. Then we say that ¢ and ¢ satisfy
the functional equation A(s)e(s)=A(r—s)y(r—s) if there exists a meromorphic
function x with the following properties:

() x(s)=A(s)p(s), o> 05, X(5)=A(r—s)p(r—s), o <r—of;

(i) lim;pme) - x(s)=0, uniformly in every interval —o0 <o, S0 <0y <0;

(iii) the poles of x are confined to some compact set.

For such arithmetical functions Chandrasekharan and Narasimhan [6], [7]
have established fundamental identities involving Bessel functions. See also [3]
and [5]. Let g be a nonnegative integer and x> 0. Define

Aa(x) l"(q + l) z a(n)(x - An) ’

where the ' indicates that if ¢ = 0 and A, = x, a(n) is to be multiplied by 3.
Define also

L()p(s) c4q
0.0 = 25|, Trrgs ™" &

where C, is a cycle enclosing all of the integrand’s poles. Furthermore, define
2.1 Dy(x) = Ay(x)— Qo).
Suppose that for o> o,

sup
0=sh=1

b(n)un=7 | = o(1)

m2su, <(m+h)2

as m tends to co. Then, for ¢>2¢¥ —r—3/2,

@2) D) = 3 2 1),

where in the three cases A(s)=T(s), I'(3s)['3{s—p}), and I'*(A{s+1}) we have,
respectively,
L(x) = x+9],  (2x13),
= XV %cos (H{p+ 1ym) ]y 4114517
=sin (H{p+1m)[ Y4 0414312 +(2(= 1)P+m) K, 4 o+ 1(4x12)]},
= x@+1/2) -q{ Yq+ 1(4.,‘;112) + (2( - l)“ + I/W)KH 1(4x112)}.
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The series of Bessel functions in (2.2) converges uniformly on any interval in x>0
where A,(x)— Q,(x) is continuous. The series converges boundedly on any compact
interval in (0, o) if g=0.

Note that from standard differentiation formulae for Bessel functions we have

(2.3) Iy(x) = I,_y(x).
In the sequel we shall assume that (2.2) is valid for g=0.

3. A Voronoi summation formula for ‘“smooth’’ functions. The proofs of the
theorems in this section are very easy.

THEOREM 1. Let fe CY(0, o0). Then, if 0 <a<A; <x <00,

GD 3 a0 = [ eiose dr+ 3 2 @) O [ 1sunr ar

ApSXx

Proof. By partial summation and (2.1),

S a)f(h) = Ao(x)f(x)— L”Ao(r)f'(t) at

= {Qo(x) + Do(x)}f(x) —f {Qo(t)+ Do()}f () dt.

Since Dy(t) converges boundedly on [a, x], we may invert the order of summation
and integration [29, p. 41] to obtain ‘

j ")+ Do} (1) dit = j 0u()f (t) dt+3 %f”—) j Luat)f (1) dt.

The integral involving Q,(¢) clearly exists because of assumption (iii). integrating
by parts with the aid of (2.3), we obtain

3 al)f ()= (Qu@)+ Dol @+ | Que)f) de+ 3 o) ”‘”’ (1 ar

nSX

But a<A,, and so Qq(a)+ Do(a)=A,(a)=0. Thus, the proof is complete.

The inversion in order of summation and integration above is not necessarily
justified if a=0. In Corollary 8 we shall state some conditions that insure the
bounded convergence of Dy(t) on 0<¢=<x in the case A(s)=I(s). The following
theorem is clear from the proof of Theorem 1.

THEOREM 2. Let fe C™(0, o). Suppose that Dy(0)f(0) <co and [ Qo(2)f(t) dt
<oo. Furthermore, assume that D(t) converges boundedly on 0<t=<x. Then (3.1)
is valid with a=0.

We now prove two theorems which do not depend upon the bounded conver-
gence of Dy(t) on 0=¢=x.

THEOREM 3. Let fe CV[0, o0). Suppose that the poles of (s) are in the half-plane
0>0. Then (3.1) is valid with a=0.
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Proof. We shall show that letting a tend to O in Theorem 1 is justified by con-
tinuity considerations.
Since the poles of ¢(s) lie in 0> 0,

jo " OuO)f(1) dt < co.

Thus, the first term on the right-hand side of (3.1) is continuous at a=0. Upon
an integration by parts, the second term on the right-hand side of (3.1) becomes

32) Dy(x)f(x) — Do(@)f(a) j " Dot)f (1)

where the inversion in order of summation and integration is justified as in the
proof of Theorem 3.1. Ay(a) is clearly continuous at a=0, and Q(a) is continuous
at a=0 by our assumption on the poles of ¢. (3.2) is then continuous at a=0, and
the proof is complete.

In some applications the above condition on f at the origin is too strong. In the
case A(s)=I'(s) we are able to weaken this condition. Because K, and Y, have
singularities at the origin, our proof is not valid for the other choices of A(s).

THEOREM 4. Let fe C®(0, o). Suppose that A(s)=T'(s) and that the poles of ¢
lie in 0>0. Assume that Qu(t)f(t) and Q,(t)f’(t) are continuous at t=0. Lastly,
suppose that

1
[ R ()] dt < oo,
o
Then,

2, amf)
(3.3) M= by [
= [[ ars a3 28 [ e, @ity ) .

Proof. Proceed as in the proof of Theorem 3. From (3.2) and our hypotheses we
need only to examine

b(n) (* ,
z o J; Io(uat)f'(2) dt.

Upon an integration by parts, the above becomes

3.4) DS )= Du@f @ =3 2 [ I ()

Since Q,(a)f"(a) is continuous at a=0, it suffices to show that
3.5) 5 o [ 1, @t S0 d

is absolutely convergent. For then the infinite series in (3.4) converges uniformly
on 0<a=1 and hence is a continuous function of a on [0, 1].
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We divide the interval of integration in (3.5) into [0, 1/u,] and [1/u,, 1]. Since
J,(s)=0(x") as x tends to 0, the integral over [0, 1/u,] is less than in modulus

1ug 1/up
(3'6) A‘ug’+1)/2J‘ tr+1|f”(t)| dt é AI""I—IMJ‘ tr/2+1/4|f”(t)| dt.
0 0

Since J,(x)= O(x~'/?) as x tends to oo, the modulus of the integral over [I/u,, 1] is
less than

1
3.7 Az [ e dr
g

Now, since (2.2) is valid for g=0, we must have 0> 20¥ —r—3/2 or r/2+3/4> o}.
Hence, from (3.6) and (3.7) the modulus of (3.5) is less than

A z bm)| t"2+1'4|f”(t)| dt < o,

r/2 +3/4

and the proof of (3.3) is complete.

Of course, by subtraction a Voronoi formula may be given over any finite interval
[a, b], a2 0, from the above results. We now wish to replace x by oo in these
theorems.

THEOREM 5. Let fe C®(0, c0). Suppose that Dy(x)f(x) and x"2*1'*f"(x) tend to

0 as x tends to . Assume that, for x>0,

f 112+ 38| £7(1)| dt < oo
Then, if 0<a <A, *

tim (37 a0~ [ oinsw d) = 3 ”‘”’j I_y(uat)f(0) dt,

X=0 \ApSXx

provided that the limit on the left side exists.

By assuming in addition either the hypotheses of Theorems 2, 3, or 4 we may let
a=0 in Theorem 5. To determine if Dy(x)f(x) tends to O as x tends to co, we may
consult a general theorem of Chandrasekharan and Narasimhan [7, Theorem 4.1].

Proof. It is sufficient to show that

b n
2 [ 1wt f0)
tends to 0 as x tends to co. The above becomes, after an integration by parts,

(3.8) o101z -3 %2 [ 1) )

The integration by parts is valid, and the integrated term tends to 0 as x tends to oo,
because of our hypothesis on Dy(x)f(x). After another integration by parts, the
series in (3.8) becomes

69 DS O -3 sk | Bt @) dr
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Now, I,(x)=0(x""2*1/%) as x tends to co. Hence,

(3.10) D) = ofwre 3 L) — oy

as x tends to oo, since r/2+3/4 > o¥. Hence, the last integration by parts is valid,
and the integrated term tends to 0 as x tends to oo, because of our hypothesis on
xT12+14f7(x), Using the above estimate for I;(x), we find that the modulus of the
infinite series in (3.9) is less than

A3 LBk [T emem ) dr = o)

as x tends to oo, since both the series and integral converge.
4. A Voronoi summation formula for functions of bounded variation.

THEOREM 6. Let f be of bounded variation on [a, x], where 0 <a <), <x <o0.
Then,

3 Z aM{f (A +0)+/(2,—0)}

4.1 25
- f 0u0f @ di+3 =

b(n)

j "Ly (ua)f(t) dt.

Proof. The proof follows along the same lines as Landau’s proof for a(n) =ry(n)
[24, Satz 559]. We shall only indicate those details which differ from Landau’s.
As in [24], it suffices to show that

(42) 5 20 [ Lsuat) ) et [ Qi01fte) i =

where either
o« = A, < B < A1, and f is monotonically

4.3
*3) increasing on [A, B] with f(A,+0) =
or
A <a < Xyy =P8, and f is monotonicall
(4.4) ke < @ e+1 = B fi nically

increasing on [a, A,,,] with f(4,;—0) =0

We shall prove (4.2) in the case (4.3). The proof for the case (4.4) is similar.
Now, Dy(t) converges boundedly on [A,, B]. Thus, there exists a number M, >0,
depending upon the interval, such that, for A, <¢<pg and every m>0,

S b(") To(pat)

n=1

(4.5)

< M,.

Since Qy(t) is continuous, there exists a number M, >0 such that, for A, <t<8B,

4.6) [Qo(®)] < M.
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Let >0 be given. Choose >0 such that A,+8 <8 and
@.7) S\ +98) < ¢/8M,

where M =sup (M,, M,). Applying the second mean value theorem for integrals
[29, p. 380], we find that

f,\k{ b(n) I_y(pat)+ QB(t)}f(t) dt

4.) ( j j“) {,.21 ﬁf”) I y(uat) + Qa(t)}f(t) dr
= (roe+n [ - “rre—0y [ - 3,58 L+ i},

where A < £,(m) S A+ 8 S €5(m) <B. Upon integration and the use of (4.5)-(4.7),
we have

4.9

SOt 9) { 5®) 1 i)+ Qa(t)} dt ’ < cQM,+2M)[8M < /2.
&1(m)

n= 1l-"n

Now, Dy(t) converges uniformly on [A,+ 8, 8], for [A,+ 8, B] contains no members
of {A,}. Clearly then, we can choose m large enough so that

(4.10)

Luat) + Qo(t)}

< gf2.

2m)

Using (4.9) and (4.10), we find from (4.8) that, for m large enough,

b(n)
n= 1 :u'n

from which (4.2) follows.

We now wish to extend the previous theorem to a=0. It is clear that we can use
the same argument as in the above proof if Qu(¢) is continuous at t=0 and if we
can show that Dy(t) converges boundedly on 0 <¢=< x. Again, the Bessel functions
K, and Y, cause difficulty because of their singularities at the origin. Thus, we
consider only the case A(s)=I'(s). In order to show the desired bounded con-
vergence, we must derive an identity which is a generalization of a theorem of
Landau [24, Satz 523] and of Theorem 2 in [2]. Our somewhat different proof
enables us to establish the generalization.

We first state some properties of J,(x) that we shall need. For v>0 and a>0
[32, p. 406],

<e,

j L_y(uat)f(2) dt + j QWS (2) dt

f Jy-1(at)J(t) dt = a’~ 2, a<l,
1]

(4.11) _3 a1,

=0, a>1.



1971] COEFFICIENTS OF A CLASS OF DIRICHLET SERIES. V 147
For arbitrary v [32, p. 45],
(4.12) (d/dx){x*T(x)} = —x 7"y 41(%).

Instead of introducing additional notation, we keep the same notation, A,(x),
Q.(x) and D, (x), although the roles of ¢ and ¢ are reversed, in the following
theorem.

THEOREM 7. Let A(s)=T(s). Suppose that r> —2 and that the poles of | lie in
the half-plane o >0. Then, for x=0 and y >0,

“Zé , B(m) (] p) 2T (2t} 2)

= 3 a) =3 xR [T, a0)

AnsS

+(x[y)T* PRI 2{xy Y2 Dy(y) +(x] y)2T(2{xy}%) Do(¥)
= (x[0)"2T(2{x1}®) Do(1) ¢ =0

+ j e/ It} 2) Qie) .

4.13)

The hypothesis concerning the poles is needed for technical reasons which are

pointed out in the proof.
Proof. By (4.11) for r> —2,

2 aln) = 3 a(m)(x/A)r+ fom1r+1(I{An/x}”2)lr+z(t) dt

AnSx

(4.14) = 3 am)(x/A,) 1
2xy)1/2 @
x (f + 132 )Jr+ 1(tH{A/ X} %), 4 o(0) dt.

[} 2(xy)

Replacing ¢ by (2xt)'2 in the first integral on the right-hand side of (4.14), we
obtain

2(xy)1/2

5 a2 [ a1 o) d
(4.15) = [ty xS a M, QO dr
= [ i e @ m Dy a,
where the inversion in order of summation and integration is justified since D,(¢)

converges absolutely. Upon an integration by parts with the aid of (4.12), the above
integral becomes

@.16)  —(x/y)T D), 2y} Dy (y) + f (x[£)T+ D2, , (QAxt ) Do) i,
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since D;(0)=0, as the poles of ¢(s) are in 0>0. Upon a similar integration by
parts, this last integral becomes

= (x[y)" 2T (2xy 2 Do(p) + (x[1) 2T (2{x1}%) Do(t) e =0

4.17) + J" (x/t)"2T,(2{xt}*/?) dDy(t).

Note that D,(0) is finite since the poles of ¢ lie in the right half-plane. The integral
in (4.17) can be written as

j (xRt o) dAo(r) — Qit) dt)
@4.18) °° ,
= 3 el 200 - f e/t Tt 12 Qi (1) .

Combining (4.14)-(4.18), we arrive at (4.13).

COROLLARY 8. In addition to the notation and hypotheses of Theorem 7, suppose
that r=0 and that Dy(x)=O0(x"?) as x tends to co. Then,

2 b)) 2T 2 X} %)
converges boundedly on any compact interval in x20.

Proof. In view of Theorem 7, we only need to show that all expressions on the
right-hand side of (4.13) are O(1) as y tends to . Also, in view of the theorem of
Chandrasekharan and Narasimhan stated in §2, we may assume that 0<x=<e,
where ¢>0 is fixed.

The first expression is obviously O(1). The second term is shown to be O(1) in
[2]. From (3.10), D,(y)=0(y"2+/*) as y tends to 0. Since r20, J,.;(2{xy}'/?) is
bounded for all xy = 0. It follows that the third term is O(1). Since r =0, J,(2{xy}/?)
is bounded. Since also Dy(y)=0(y"'?), we see that the fourth term is O(1). The
fifth term is clearly O(1).

Lastly, we consider the integral. It will be sufficient to show that

(4.19) f ® -1y Ut} Qi) dt

a

converges, where a> 0. Since i has only poles, Qo(?) is a finite sum of products of
powers of ¢ and of log ¢. For ¢ large, the largest term will be no greater than a
multiple of ¢% log* ¢ for some nonnegative integer k. Now, as ¢ tends to oo [32,
p. 199],

J(t) = (cre+coe~ )t~ 12+ (cge +cie ™M)t ~32 4+ O(2~5/%),

where c;, . . ., ¢, are constants. Thus, (4.19) converges if and only if

-]
f eutza;—r—alz logk tdt
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converges. But since 20¥ —r—3/2 <0, the above integral converges. Hence, the
last term on the right-hand side of (4.13) is O(1) as y tends to oo, and the proof is
complete.

In light of our comments after Theorem 6, we now have

THEOREM 9. Suppose that the poles of ¢(s) are in the half-plane o>0. Under the
hypotheses of Theorem 6 and Corollary 8, (4.1) is valid with a=0.

We now wish to extend Theorem 6 by letting x=o0o0.

THEOREM 10. Let f be of bounded variation on [a, x] for every x,0<a <\, <x <0,
and suppose that f is the integral of f'. Assume that Dy(x)f(x) tends to O as x tends
to oo,

(4.20) f 195 +e=12) £/()| df < o0
for some >0, and

@4.21) f Do(O)f'(t) dt < .
Then,

lim (4 37 a@){fOn+0)+70u=0)- [ Q4(017(0) )

4.22) *2® N AnsXx
”‘”) ) [ ratmnrr

provided that the series on the right-hand side converges.

Proof. We proceed as at the beginning of the proof of Theorem 5. After an
integration by parts, we see that it is sufficient to show that -

b(n) (* :
> j L(uat)f(t) dt

tends to 0 as x tends to co.
Write the above as

(3+3) 52 tanr =555,

aSX Hp>x

say. In the sum S;, p, <t. Since also o} =r/2+1/4 [7, p. 111},
b(n ,
i 54 3 5B [T o) a

<4 3 L[ vesm i) ar = o)
up=x Mn® x

as x tends to oo, by (4.20).
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To estimate S, we regard x as fixed for the moment. Since the series on the
right-hand side of (4.22) converges, given ¢>0, there exists an x, such that, for
x,g'xO’

s fm 2 s de

u,.>x

If x, = x, in particular we can take x’=x. Thus, |S;| <¢, and we are done. If x,> x,
there remains to estimate

[ nemorwd=_ 5 B(["4[") nmre de = si+s,

x<u,.sxo Hn X <UnS X0 75

say. S, is estimated in the same way as S;, and we easily obtain

o,,+s

s 54 3 BOL["rsesm o) ar = ot

as x tends to c0. Now,

So= [ 3 B unr o dr

- {;Jo(t)—u;; 2 1} ar

By (4.21), the integral involving Dy(?) is o(1) as x tends to co. Now,

b(n)
z u Io(pat)

up <t Mn

by partial summation. Thus, by (4.20), the integral of the sum on the right-hand
side of (4.23) is o(1) as x tends to co. This completes the proof.

(4.23)

<AtrI2 1/4 Z lb(ﬂ)l < Ataa+s 1/2

rl2 +1/4 =

5. Additional remarks on the theorems. We remark that Wilton [34] has stated
a theorem similar to Theorem 10 when a(n)=d(n). The difference in the two
theorems is that Wilton has the assumption that f(x) tends to 0, while we have the
hypothesis that Dy(x)f(x) tends to 0 as x tends to co. Dixon and Ferrar [12]
restate Wilton’s theorem with the hypothesis that x/2*¢f(x) tends to 0 as x tends
to oo for some ¢>0. In a footnote they remark that “. . .his (Wilton’s) statement
seems, to us, to contain a misprint”’. Since Dy(x)= O(x?) for some 0, 1/4 <6<1/3,
our hypothesis lies “between” those of Wilton and Dixon and Ferrar.

The key to proving Theorem 9 is identity (4.13). Wilton [33] has proven a similar,
but even more complicated, identity when A(s)=TI?%(3s) and a(n)=d(n). This
identity was the essential ingredient in extending the Voronoi formula to a=0
in [34].

We have indicated several references to the literature for summation formulae
involving d(n) and r,(n). We indicate a few additional arithmetical functions that
are covered by our theorems and have been discussed in the literature. Let {A,}
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be the values assumed by a positive definite quadratic form in two variables.
Voronoi [31] first gave the summation formulae here. It is also proved in [22] and
[2]. Let {a(n)} be the coefficients of a modular cusp form of negative dimension.
Then results are given in [22], [14], [20] and [2]. Let a(n)= F(n), the ideal function
for a quadratic number field K. If K is imaginary, results are given in [22], [8] and
[2]. If K is real, results are given in [8]. We remark that the proof of Theorem 3
in [8], when K is real, is not correct, because the estimate I;(¢) = 0(¢%2) as ¢ tends
to 0, given on p. 308, is false.

We have not discussed here Voronoi summation formulae where the infinite
series do not converge in the ordinary sense, but are summable by Riesz means
[10], [11], [18] and [25]. In particular, such formulae arise when (2.2) does not hold
for g=0. It would be desirable to have convergent Voronoi type summation for-
mulae for such arithmetical functions. One might hope then to find a general
formula for 3, <. a(n)f(A,)(x— A,)* for suitable g >0, but no such formula appears
to have been discovered.

6. Applications. Wilton [35] has given some applications of the Voronoi -
formula in estimating sums of the form 3, d(n)f(n). Several authors have
derived arithmetical identities by using particular examples of f(x). We give
several identities here in the case A(s)=I'(s). As is to be expected, several of our
identities hold in a more general setting. For each example we refer to theorems
which insure the validity of our application, but in each case there is more than one
choice of theorems possible.

We shall need the values of several integrals.

For a, p>0 and v> —1 [32, p. 394],

® vl ey g @ —-a

©.1) fo (4 ar) exp (—p7) dt = pr exp ( - )
For a, 5>0 and v> —1 [32, p. 386],

© cut o 2aQb)YT(v+3)2
(6.2) fo 1 (br)e™ dt = G,Q(JJ,TW'
For a, 5>0 and v> —4 [32, p. 386],

° v —al 2b VI‘ +

©3) [T enene-=ar - (—a%-

For Re u> |Re v| [32, p. 388],

64) [kt dt = 22T G- DTG+,
For a, b, Re u>0 and v> —1 [32, p. 410],

6.5 f: K (at)J,(br)tr*+ 1 dt = (2“’(;(3_‘;’,",%911”1* 2
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For a>0, z real, Re u> —1, and v complex [32, p. 417],

K(a{t2+z2}1/2) jurr gy _ 2T+

(6.6) @+ i Figy-a-1 K, _y-1(az).

For a,b>0, z#0 and real, p> —1, and » complex [32, p. 416],

® K (a{t*+2%}'%)
©.7) [} o0 =
= (G + B A K, (el ),

For a, b, p>0 and v> —1 [32, p. 395],

o a4 b ( ab
(6.8) J'o exp (—p*)J,(at) (bt )t dit = exp( o )Iv 2p2)’

tll+1 dt

where here I, is the Bessel function defined in [32, p. 77]. For a, 5>0, n>0 and
integral, and n+v> —1 [15, p. 721],

(6.9) J trtviZe=at] (2bt1%) dt = n!bY exp (—b%la)a="""LY(b?/a),
V]
where L{’(x) is the Laguerre polynomial defined by [15, p. 1037]
LY(x) = % e*x~V(d™dx™)(e*x"*Y).

ExaMPLE 1. Let f(t)=e~%, y>0. Assume the hypotheses of Theorems 3 and
5. An easy calculation gives

[T oswear = 5[ rwtsry=rds = PO,

say. Replacing ¢ by ¢2 in the second expression on the right side of (3.1) and using
(6.1), we have, for r>0,

jo I_s(uat)e™ dt = pi= exp (= paly)l¥".

Thus, we have the ‘“modular relation”
2 a(me=* = y= > b(n) exp (—pa[y) +P(»),

which is, in fact, equivalent to the functional equation [6, Theorem 1].

ExAMPLE 2. Let f(t)=exp (—t'/2y), y>0. Assume the hypotheses of Theorems
2, 5 and 7 and Corollary 8. Using the same substitution as in Example 1, we have
by (6.2), for r>0,

4ur-yIN(r+
f I_;(pat) exp (—t*2y) dt = O+ 4“y)r£r1/2-}2/2
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Thus, we have the following identity that has been very useful in obtaining Q-
results for the average order of certain arithmetical functions:

> a(n) exp (—A3'2y)
4yI'(r+3) b(n)

(6.10) = }_I P(ZS) (s)y—zs ds+ z .
i Joo P 2 (J’2+4l‘«n)r+1/2

This identity was first discovered by Hardy for the special cases ry(n) and 7(n),
Ramanujan’s arithmetical function (see the examples in [6]). Hamburger [21]
derived a special case of (6.10) when r=3. A more general identity is given in
[6, Lemma 6].

EXAMPLE 3. Let f(t)=t"%2exp (—t'2y), y>0. This next identity can be ob-
tained by formally integrating (6.10). However, if we assume the hypotheses of
Theorems 2, 5 and 7 and Corollary 8, we have upon the use of (6.3), for r>1,

2, a(mA; 12 exp (— Ni/%y)
= lj I'2s—De(s)y~2*1ds+
7l Jeo

oY) b
20 2P )

ExAMPLE 4. Let f(t)=log?(x/t), where q is a positive integer. Assume the
hypotheses of Theorems 2 and 7 and Corollary 8. Upon g integrations by parts,

[[onotor i = £ [ L2 ds = 1R a)

say. Replacing ¢ by 2(u,t)'/2 and integrating by parts once with the use of the
formula [32, p. 45], (d/dx){x*J(x)}=x"J,_,(x), we find that, for r>0,

x - 4
[} Gty =027ty 087 (xit dt = Z22 [ 20,0y 1og =1y
o n ]

where £=2(u,x)*2. We thus have

Z a(n) log® (x/A;) = R(x; q)+ ), > b(n)f tT1(t) log?= 1 (é[t) dt,

an identity proved by us in [4, Theorem 3].

ExaMPLE 5. Let f(¢t)=t“""2K,_,(2{ty}'/?), where o>r and y>0. Assume the
hypotheses of Theorems 2 and 10. With the use of (6.4), a straightforward calcula-
tion using the same substitution as in Theorem 1 yields

[T ek, @iy di = o[ T@TG+s—rpz)y--o- e
0 Co

With the use of (6.5), we obtain, for r>0,-

(s r)/ZF(s)

[ 1 Grrey ar = B2
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We thus obtain for o>r,

[6) 3 2 = 2.3 )l )" Ke- 2000 ))

(6.11) 1
'ZFJC,, LTz +s—r)p(z)y=*7"" dz.

With the roles of ¢ and y reversed, this identity for the *generalized” Dirichlet
series on the left was first given by us in [1]. Another proof is given in [5]. An
equivalent identity when a(n)=r,(n) is given in [10]. (6.11) may be used to give an
analytic continuation of the “generalized” Dirichlet series.

ExaMPLE 6. Let f(¢)=(b/(t+a))"?K,2{(t+a)b}*'?), where a,b>0 and v is
arbitrary. Assume the hypotheses of Theorems 3 and 10. Replacing ¢ by ¢2 and
using (6.6), we have

[T asone a = 5[ Tew6R K, (2laty) = VG, b),
[} Co
say. By (6.7) for r>0,

J:D I_y(pat)f(2) dt = p7”*((pn+b)/a)"~ 2K, _(2{(pn+b)a}'’?).

Since K,(z)=K_,(z), we thus obtain

2. a(m)(b/(A+ @)K, (2{(A, + a)b}'1?)
= U(a, b)+ 2 b(n)(a/(pn+b))" 2K, _ (2{(pn +b)a}'’?),
an identity obtained by us in [S, Theorem 9.1]. There, we did not evaluate U(a, b).
EXAMPLE 7. Let f(t)=e %t-C-V2] _ (at'?), where a,r,y>0. Assume the
hypotheses of Theorems 2 and 10. By (6.8),

(r-1)/2

© 2 4 a 1/2
I_ (ut)f(t)dt = Hn ex (__a + P"‘)Ir- ( s ),
[ rstnro ——exp (-t (2

where I,_, is a Bessel function. Hence,
> a(n) exp (— A, y)A; V2T 1 (aX}?)

= on Q’o(t)e—tllt"(f-1)I2J'_1(atll2) dt
(6.12) ° a2+4# ap‘ll2
eyt 3 b (e (285,

an identity which appears to be new. Ordinarily, the integral in (6.12) cannot be
explicitly evaluated. However, if ¢ has at most one pole, that at s=r with residue p,
which is the case in most examples, the integral reduces to

(2pa’~*/(2y)) exp (—a?[4y),



1971] COEFFICIENTS OF A CLASS OF DIRICHLET SERIES. V 155
by (6.1). If, in addition, r=1, (6.12) reduces to

y 2, a(n) exp (— A, »)Jo(aXy'?)

2 1/2
= pexp (—a*/4y)+ 2, b(n) exp (_a :;”n)lo(a? )

EXAMPLE 8. Let f(t)=t™e~*, where y>0 and m is a positive integer. Assume
the hypotheses of Theorems 3 and 10. By (6.9) if m+r>0,

fml-l(mt)t"‘e"” dt = mlpp~t exp (—pa/y)y =™ "L5 " P(pal y)-
1]

Hence, we have

Z a(n)AZ exp (— A, y)
1
= 303 |, TG+ mpls)y=r=m ds-+mly = S o) exp (=l D) Lsualy)
(]
an identity we derived in [5, Theorem 10.1].
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