Identities involving the coefficients of a class of Dirichlet series. V
HTML articles powered by AMS MathViewer
- by Bruce C. Berndt
- Trans. Amer. Math. Soc. 160 (1971), 139-156
- DOI: https://doi.org/10.1090/S0002-9947-71-99991-0
- PDF | Request permission
Abstract:
We derive various forms of the Voronoï summation formula for a large class of arithmetical functions. These arithmetical functions are generated by Dirichlet series satisfying a functional equation with certain gamma factors. Using our theorems, we establish several arithmetical identities.References
- Bruce C. Berndt, Generalised Dirichlet series and Hecke’s functional equation, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), 309–313. MR 225732, DOI 10.1017/S0013091500011962
- Bruce C. Berndt, Arithmetical identities and Hecke’s functional equation, Proc. Edinburgh Math. Soc. (2) 16 (1968/69), 221–226. MR 250981, DOI 10.1017/S0013091500012724 —, Identities involving the coefficients of a class of Dirichlet series. I, Trans. Amer. Math. Soc. 137 (1969), 345-359. MR 38 #4656.
- Bruce C. Berndt, Identities involving the coefficients of a class of Dirichlet series. I, II, Trans. Amer. Math. Soc. 137 (1969), 345–359, 361–374. MR 236360, DOI 10.1090/S0002-9947-1969-99934-2
- Bruce C. Berndt, Identities involving the coefficients of a class of Dirichlet series. III, Trans. Amer. Math. Soc. 146 (1969), 323–348. MR 252330, DOI 10.1090/S0002-9947-1969-0252330-1
- K. Chandrasekharan and Raghavan Narasimhan, Hecke’s functional equation and arithmetical identities, Ann. of Math. (2) 74 (1961), 1–23. MR 171761, DOI 10.2307/1970304
- K. Chandrasekharan and Raghavan Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93–136. MR 140491, DOI 10.2307/1970267
- K. Chandrasekharan and Raghavan Narasimhan, An approximate reciprocity formula for some exponential sums, Comment. Math. Helv. 43 (1968), 296–310. MR 249372, DOI 10.1007/BF02564398 A. L. Dixon and W. L. Ferrar, Lattice-point summation formulae, Quart. J. Math. Oxford Ser. 2 (1931), 31-54. —, Some summations over the lattice points of a circle. I, Quart. J. Math. Oxford Ser. 5 (1934), 48-63. —, Some summations over the lattice points of a circle. II, Quart. J. Math. Oxford Ser. 5 (1934), 172-185. —, On the summation formulae of Voronoï and Poisson, Quart. J. Math. Oxford Ser. 8 (1937), 66-74.
- W. L. Ferrar, Summation formulae and their relation to Dirichlet’s series, Compositio Math. 1 (1935), 344–360. MR 1556898
- W. L. Ferrar, Summation formulae and their relation to Dirichlet’s series II, Compositio Math. 4 (1937), 394–405. MR 1556983 I. S. Gradšteĭn and I. M. Ryžik, Tables of integrals, series and products, 4th ed., Fizmatgiz, Moscow, 1963; English transl., Academic Press, New York, 1965. MR 28 #5198; MR 33 #5952. A. P. Guinand, A class of self-reciprocal functions connected with summation formulae, Proc. London Math. Soc. (2) 43 (1937), 439-448. —, Summation formulae and self-reciprocal functions, Quart. J. Math. Oxford Ser. 9 (1938), 53-67. —, Summation formulae and self-reciprocal functions. II, Quart. J. Math. Oxford Ser. 10 (1939), 104-118. —, Finite summation formulae, Quart. J. Math. Oxford Ser. 10 (1939), 38-44.
- A. P. Guinand, Integral modular forms and summation formulae, Proc. Cambridge Philos. Soc. 43 (1947), 127–129. MR 17774, DOI 10.1017/S0305004100023276
- Hans Hamburger, Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen $\xi$-Funktion äquivalent sind, Math. Ann. 85 (1922), no. 1, 129–140 (German). MR 1512054, DOI 10.1007/BF01449611 N. S. Koshliakov, Application of the theory of sum-formulae to the investigation of a class of one-valued analytical functions in the theory of numbers, Messenger Math. 58 (1929), 1-23. —, On Voronoï’s sum-formula, Messenger Math. 58 (1929), 30-32. E. Landau, Vorlesungen über Zahlentheorie, Zweiter Band, Chelsea, New York, 1947.
- C. Nasim, A summation formula involving $\sigma _{k}(n),k>1$, Canadian J. Math. 21 (1969), 951–964. MR 246841, DOI 10.4153/CJM-1969-104-3
- C. Nasim, On the summation formula of Voronoi, Trans. Amer. Math. Soc. 163 (1972), 35–45. MR 284410, DOI 10.1090/S0002-9947-1972-0284410-9
- T. L. Pearson, Note on the Hardy-Landau summation formula, Canad. Math. Bull. 8 (1965), 717–720. MR 194406, DOI 10.4153/CMB-1965-053-8 W. Sierpiński, O pewnem zagadnieniu z rachunku funkcyj asymptotycznych, Prace Math.-Fiz. 17 (1906), 77-118.
- E. C. Titchmarsh, Han-shu lun, Science Press, Peking, 1964 (Chinese). Translated from the English by Wu Chin. MR 0197687 M. G. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. École Norm. Sup. (3) 21 (1904), 207-267, 459-533. —, Sur la développement, à l’aide des fonctions cylindriques, des sommes doubles $\Sigma f(p{m^2} + 2qmn + r{n^2})$, où $p{m^2} + 2qmn + r{n^2}$ est une forme positive à coefficients entiers (verhandlungen des Dritten Internat. Math.-Kongr, Heidelberg), Teubner, Leipzig, 1905, pp. 241-245.
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746 J. R. Wilton, On Dirichlet’s divisor problem, Proc. Roy. Soc. A 134 (1931), 192-202. —, Voronoïs summation formula, Quart. J. Math. Oxford Ser. 3 (1932), 26-32. —, An approximate functional equation with applications to a problem of Diophantine approximation, J. Reine Angew. Math. 169 (1933), 219-237.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 160 (1971), 139-156
- MSC: Primary 30.24; Secondary 10.00
- DOI: https://doi.org/10.1090/S0002-9947-71-99991-0