Degree of symmetry of a homotopy real projective space
HTML articles powered by AMS MathViewer
- by H. T. Ku, L. N. Mann, J. L. Sicks and J. C. Su
- Trans. Amer. Math. Soc. 161 (1971), 51-61
- DOI: https://doi.org/10.1090/S0002-9947-1971-0282377-X
- PDF | Request permission
Abstract:
The degree of symmetry $N(M)$ of a compact connected differentiable manifold M is the maximum of the dimensions of the compact Lie groups which can act differentiably and effectively on it. It is well known that $N(M) \leqq \dim \; SO(m + 1)$, for an m-dimensional manifold, and that equality holds only for the standard m-sphere and the standard real projective m-space. W. Y. Hsiang has shown that for a high dimensional exotic m-sphere M, $N(M) < {m^2}/8 + 1 < \left ( {\frac {1}{4}} \right )\dim SO(m + 1)$, and that $N(M) = {m^2}/8 + 7/8$ for some exotic m-spheres. It is shown here that the same results are true for exotic real projective spaces.References
- Armand Borel, Le plan projectif des octaves et les sphères comme espaces homogènes, C. R. Acad. Sci. Paris 230 (1950), 1378–1380 (French). MR 34768
- P. E. Conner, Orbits of uniform dimension, Michigan Math. J. 6 (1959), 25–32. MR 106262, DOI 10.1307/mmj/1028998134
- Luther Pfahler Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949. 2d printing. MR 0035081
- Wu-chung Hsiang and Wu-yi Hsiang, Classification of differentiable actions of $S^{n}$, $R^{n}$, and $D^{n}$ with $S^{k}$ as the principal orbit type, Ann. of Math. (2) 82 (1965), 421–433. MR 181695, DOI 10.2307/1970705
- Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups. I, Amer. J. Math. 89 (1967), 705–786. MR 217213, DOI 10.2307/2373241
- Wu-yi Hsiang, On the bound of the dimensions of the isometry groups of all possible riemannian metrics on an exotic sphere, Ann. of Math. (2) 85 (1967), 351–358. MR 214084, DOI 10.2307/1970446 —, On the degree of symmetry and the structure of highly symmetric manifolds, University of California, Berkeley, Calif, (mimeo.).
- Klaus Jänich, Differenzierbare $G$-Mannigfaltigkeiten, Lecture Notes in Mathematics, No. 59, Springer-Verlag, Berlin-New York, 1968. MR 0229261, DOI 10.1007/BFb0098472
- J. M. Kister and L. N. Mann, Isotropy structure of compact Lie groups on complexes, Michigan Math. J. 9 (1962), 93–96. MR 132120, DOI 10.1307/mmj/1028998627
- H. T. Ku, L. N. Mann, J. L. Sicks, and J. C. Su, Degree of symmetry of a product manifold, Trans. Amer. Math. Soc. 146 (1969), 133–149. MR 250340, DOI 10.1090/S0002-9947-1969-0250340-1
- Deane Montgomery and Hans Samelson, Transformation groups of spheres, Ann. of Math. (2) 44 (1943), 454–470. MR 8817, DOI 10.2307/1968975
- Paul S. Mostert (ed.), Proceedings of the Conference on Transformation Groups (New Orleans, 1967), Springer-Verlag New York, Inc., New York, 1968. MR 0243554
- Jean Poncet, Groupes de Lie compacts de transformations de l’espace euclidien et les sphères comme espaces homogènes, Comment. Math. Helv. 33 (1959), 109–120 (French). MR 103946, DOI 10.1007/BF02565911
- Hsien-Chung Wang, Compact transformation groups of $S^{n}$ with an $(n-1)$-dimensional orbit, Amer. J. Math. 82 (1960), 698–748. MR 163986, DOI 10.2307/2372936
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 161 (1971), 51-61
- MSC: Primary 57.47
- DOI: https://doi.org/10.1090/S0002-9947-1971-0282377-X
- MathSciNet review: 0282377