Using flows to construct Hilbert space factors of function spaces
HTML articles powered by AMS MathViewer
- by James Keesling
- Trans. Amer. Math. Soc. 161 (1971), 1-24
- DOI: https://doi.org/10.1090/S0002-9947-1971-0283751-8
- PDF | Request permission
Abstract:
Let X and Y be metric spaces. Let $G(X)$ be the group of homeomorphisms of X with the compact open topology. The main result of this paper is that if X admits a nontrivial flow, then $G(X)$ is homeomorphic to $G(X) \times {l_2}$ where ${l_2}$ is separable infinite-dimensional Hilbert space. The techniques are applied to other function spaces with the same result. Two such spaces for which our techniques apply are the space of imbeddings of X into Y, $E(X,Y)$, and the space of light open mappings of X into (or onto) Y, LO (X, Y). Some applications of these results are given. The paper also uses flows to show that if X is the $\sin (1/x)$-curve, then $G(X)$ is homeomorphic to ${l_2} \times N$, where N is the integers.References
- R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216. MR 205212, DOI 10.1090/S0002-9947-1967-0205212-3 —, Spaces of homeomorphisms of finite graphs (preprint).
- R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771–792. MR 230284, DOI 10.1090/S0002-9904-1968-12044-0
- Richard Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593–610. MR 19916, DOI 10.2307/2371787
- Anatole Beck, On invariant sets, Ann. of Math. (2) 67 (1958), 99–103. MR 92106, DOI 10.2307/1969929 C. Bessaga and A. Pełczyński, The space of Lebesgue measurable functions on the interval [0, 1] is homeomorphic to the countable infinite product of lines (preprint).
- Beverly L. Brechner, On the dimensions of certain spaces of homeomorphisms, Trans. Amer. Math. Soc. 121 (1966), 516–548. MR 187208, DOI 10.1090/S0002-9947-1966-0187208-2 —, Topological groups which are not full homeomorphism groups (preprint).
- A. V. Černavskiĭ, Local contractibility of the group of homeomorphisms of a manifold. , Dokl. Akad. Nauk SSSR 182 (1968), 510–513 (Russian). MR 0236948
- A. V. Černavskiĭ, Local contractibility of the group of homeomorphisms of a manifold. , Mat. Sb. (N.S.) 79 (121) (1969), 307–356 (Russian). MR 0259925
- William H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668–675. MR 248883, DOI 10.1090/S0002-9939-1969-0248883-5
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- M. K. Fort Jr., Homogeneity of infinite products of manifolds with boundary, Pacific J. Math. 12 (1962), 879–884. MR 145499, DOI 10.2140/pjm.1962.12.879 R. Geoghegan, On spaces of homeomorphisms, embeddings and functions (preprint).
- Andrew M. Gleason and Richard S. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957), 631–648. MR 89367, DOI 10.2307/2372567
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25–33. MR 250342, DOI 10.1016/0040-9383(70)90046-7
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- M. Ĭ. Kadec′, Topological equivalence of all separable Banach spaces, Dokl. Akad. Nauk SSSR 167 (1966), 23–25 (Russian). MR 0201951
- M. I. Kadec, A proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Funkcional. Anal. i Priložen. 1 (1967), 61–70 (Russian). MR 0209804
- James Keesling, Localy compact full homeomorphism groups are zero-dimensional, Proc. Amer. Math. Soc. 29 (1971), 390–396. MR 275404, DOI 10.1090/S0002-9939-1971-0275404-2
- Robion C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575–582. MR 242165, DOI 10.2307/1970652
- W. K. Mason, The space $H(M)$ of homeomorphisms of a compact manifold onto itself is homeomorphic to $H(M)$ minus any $\sigma$-compact set, Amer. J. Math. 92 (1970), 541–551. MR 281234, DOI 10.2307/2373359
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- Marston Morse, A special parameterization of curves, Bull. Amer. Math. Soc. 42 (1936), no. 12, 915–922. MR 1563464, DOI 10.1090/S0002-9904-1936-06466-9
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104 J. Nagata, Modern dimension theory, Bibliotheca Math., vol. 6, Interscience, New York, 1965. MR 34 #8380.
- Peter L. Renz, The contractibility of the homeomorphism group of some product spaces by Wong’s method, Math. Scand. 28 (1971), 182–188. MR 305426, DOI 10.7146/math.scand.a-11014
- Hassler Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), no. 2, 244–270. MR 1503106, DOI 10.2307/1968202
- Raymond Y. T. Wong, On homeomorphisms of certain infinite dimensional spaces, Trans. Amer. Math. Soc. 128 (1967), 148–154. MR 214040, DOI 10.1090/S0002-9947-1967-0214040-4
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 161 (1971), 1-24
- MSC: Primary 54.28; Secondary 57.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0283751-8
- MathSciNet review: 0283751