Weighted norm inequalities for singular and fractional integrals
HTML articles powered by AMS MathViewer
- by Benjamin Muckenhoupt and Richard L. Wheeden
- Trans. Amer. Math. Soc. 161 (1971), 249-258
- DOI: https://doi.org/10.1090/S0002-9947-1971-0285938-7
- PDF | Request permission
Abstract:
Inequalities of the form ${\left \| {{{\left | x \right |}^\alpha }Tf} \right \|_q} \leqq C{\left \| {{{\left | x \right |}^\alpha }f} \right \|_p}$ are proved for certain well-known integral transforms, T, in ${E^n}$. The transforms considered include Calderón-Zygmund singular integrals, singular integrals with variable kernel, fractional integrals and fractional integrals with variable kernel.References
- K. I. Babenko, On conjugate functions, Doklady Akad. Nauk SSSR (N.S.) 62 (1948), 157–160 (Russian). MR 0027093
- B. Bajšanski and R. Coifman, On singular integrals, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 1–17. MR 0238129
- A.-P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092–1099. MR 177312, DOI 10.1073/pnas.53.5.1092
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- G. H. Hardy and J. E. Littlewood, Some more theorems concerning Fourier series and Fourier power series, Duke Math. J. 2 (1936), no. 2, 354–382. MR 1545928, DOI 10.1215/S0012-7094-36-00228-4
- Paul Krée, Sur les multiplicateurs dans ${\cal F}\,L^{p}$ avec poids, Ann. Inst. Fourier (Grenoble) 16 (1966), 91–121. MR 216245, DOI 10.5802/aif.237
- B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92. MR 199636, DOI 10.1090/S0002-9947-1965-0199636-9
- Richard O’Neil, Convolution operators and $L(p,\,q)$ spaces, Duke Math. J. 30 (1963), 129–142. MR 146673
- E. M. Stein, Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), 250–254. MR 88606, DOI 10.1090/S0002-9939-1957-0088606-8
- Robert S. Strichartz, $L^{p}$ estimates for integral transforms, Trans. Amer. Math. Soc. 136 (1969), 33–50. MR 234321, DOI 10.1090/S0002-9947-1969-0234321-X
- T. Walsh, On $L^{p}$ estimates for integral transforms, Trans. Amer. Math. Soc. 155 (1971), 195–215. MR 284880, DOI 10.1090/S0002-9947-1971-0284880-5
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 161 (1971), 249-258
- MSC: Primary 47.70
- DOI: https://doi.org/10.1090/S0002-9947-1971-0285938-7
- MathSciNet review: 0285938