Higher dimensional knots in tubes
HTML articles powered by AMS MathViewer
- by Yaichi Shinohara
- Trans. Amer. Math. Soc. 161 (1971), 35-49
- DOI: https://doi.org/10.1090/S0002-9947-1971-0287559-9
- PDF | Request permission
Abstract:
Let K be an n-knot in the $(n + 2)$-sphere and V a tubular neighborhood of K. Let $L’$ be an n-knot contained in a tubular neighborhood $V’$ of a trivial n-knot and L the image of $L’$ under an orientation preserving diffeomorphism of $V’$ onto V. The purpose of this paper is to show that the higher dimensional Alexander polynomial and the signature of the n-knot L are determined by those of K and $L’$.References
- Dieter Erle, Die quadratische Form eines Knotens und ein Satz über Knotenmannigfaltigkeiten, J. Reine Angew. Math. 236 (1969), 174–218 (German). MR 248856, DOI 10.1515/crll.1969.236.174
- Dieter Erle, Quadratische Formen als Invarianten von Einbettungen der Kodimension $2$, Topology 8 (1969), 99–114 (German). MR 238300, DOI 10.1016/0040-9383(69)90002-0
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163
- H. Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. (2) 1 (1950), 23–32. MR 35436, DOI 10.1093/qmath/1.1.23
- Yaichi Shinohara, On the signature of knots and links, Trans. Amer. Math. Soc. 156 (1971), 273–285. MR 275415, DOI 10.1090/S0002-9947-1971-0275415-1
- H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464–498. MR 143201, DOI 10.2307/1970369
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 161 (1971), 35-49
- MSC: Primary 57.20; Secondary 55.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0287559-9
- MathSciNet review: 0287559