Monofunctors as reflectors
HTML articles powered by AMS MathViewer
- by Claus Michael Ringel
- Trans. Amer. Math. Soc. 161 (1971), 293-306
- DOI: https://doi.org/10.1090/S0002-9947-1971-0292907-X
- PDF | Request permission
Abstract:
In a well-powered and co-well-powered complete category $\mathcal {K}$ with weak amalgamations, the class $\mathbfit {M}$ of all reflective subcategories with a monofunctor as reflector forms a complete lattice; the limit-closure of the union of any class of elements of $\mathbfit {M}$ belongs to $\mathbfit {M}$. If $\mathcal {K}$ has injective envelopes, then the set-theoretical intersection of any class of elements of $\mathbfit {M}$ belongs to $\mathbfit {M}$.References
- S. Baron, Reflectors as compositions of epi-reflectors, Trans. Amer. Math. Soc. 136 (1969), 499–508. MR 236237, DOI 10.1090/S0002-9947-1969-0236237-1
- Spencer E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235. MR 191935, DOI 10.1090/S0002-9947-1966-0191935-0
- Philip Dwinger, The amalgamation problem from a categorical point of view, Proc. Conf. on Universal Algebra (Queen’s Univ., Kingston, Ont., 1969) Queen’s Univ., Kingston, Ont., 1970, pp. 190–210. MR 0260644
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- Horst Herrlich, Topologische Reflexionen und Coreflexionen, Lecture Notes in Mathematics, No. 78, Springer-Verlag, Berlin-New York, 1968 (German). MR 0256332, DOI 10.1007/BFb0074312
- Horst Herrlich, An example in category theory, Math. Z. 113 (1970), 309–312. MR 260823, DOI 10.1007/BF01110330
- G. M. Kelly, Monomorphisms, epimorphisms, and pull-backs, J. Austral. Math. Soc. 9 (1969), 124–142. MR 0240161, DOI 10.1017/S1446788700005693
- J. F. Kennison, Full reflective subcategories and generalized covering spaces, Illinois J. Math. 12 (1968), 353–365. MR 227247, DOI 10.1215/ijm/1256054104
- Joachim Lambek, Torsion theories, additive semantics, and rings of quotients, Lecture Notes in Mathematics, Vol. 177, Springer-Verlag, Berlin-New York, 1971. With an appendix by H. H. Storrer on torsion theories and dominant dimensions. MR 0284459, DOI 10.1007/BFb0061029
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Gerhard Preuss, Eine Charakterisierung epireflektiver Unterkategorien einer Kategorie mit Inversionseigenshaft, Manuscripta Math. 1 (1969), 307–316 (German, with English summary). MR 257177, DOI 10.1007/BF01172139
- Claus Michael Ringel, Diagonalisierungspaare. II, Math. Z. 122 (1971), 10–32 (German). MR 291247, DOI 10.1007/BF01113561
- R. G. Swan, Algebraic $K$-theory, Lecture Notes in Mathematics, No. 76, Springer-Verlag, Berlin-New York, 1968. MR 0245634, DOI 10.1007/BFb0080281 J. L. Verdier, Séminaire géométrie algébrique 1963/64, Inst. Hautes Études Sci., Paris, 1964. MR 34 #7520.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 161 (1971), 293-306
- MSC: Primary 18A40
- DOI: https://doi.org/10.1090/S0002-9947-1971-0292907-X
- MathSciNet review: 0292907