The powers of a maximal ideal in a Banach algebra and analytic structure
HTML articles powered by AMS MathViewer
- by T. T. Read
- Trans. Amer. Math. Soc. 161 (1971), 235-248
- DOI: https://doi.org/10.1090/S0002-9947-1971-0435853-0
- PDF | Request permission
Abstract:
Sufficient conditions are given for the existence of an analytic variety at an element $\phi$ of the spectrum of a commutative Banach algebra with identity. An associated graded algebra first considered by S. J. Sidney is used to determine the dimension of the analytic variety in terms of the closed powers of the maximal ideal which is the kernel of $\phi$.References
- Andrew Browder, Point derivations and analytic structure in the spectrum of a Banach algebra, J. Functional Analysis 7 (1971), 156–164. MR 0273407, DOI 10.1016/0022-1236(71)90051-6
- Philip C. Curtis Jr. and Alessandro Figà-Talamanca, Factorization theorems for Banach algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 169–185. MR 0203500
- Bernard R. Gelbaum, Tensor products of Banach algebras, Canadian J. Math. 11 (1959), 297–310. MR 104162, DOI 10.4153/CJM-1959-032-3
- Andrew M. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech. 13 (1964), 125–132. MR 0159241
- Seymour Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0200692
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Marshall Hall Jr., Combinatorial theory, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1967. MR 0224481
- Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74–111. MR 215102, DOI 10.2307/1970361
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- S. J. Sidney, Properties of the sequence of closed powers of a maximal ideal in a sup-norm algebra, Trans. Amer. Math. Soc. 131 (1968), 128–148. MR 222651, DOI 10.1090/S0002-9947-1968-0222651-6
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 161 (1971), 235-248
- MSC: Primary 46J20
- DOI: https://doi.org/10.1090/S0002-9947-1971-0435853-0
- MathSciNet review: 0435853