## Bonded projections, duality, and multipliers in spaces of analytic functions

HTML articles powered by AMS MathViewer

- by A. L. Shields and D. L. Williams
- Trans. Amer. Math. Soc.
**162**(1971), 287-302 - DOI: https://doi.org/10.1090/S0002-9947-1971-0283559-3
- PDF | Request permission

## Abstract:

Let $\varphi$ and $\psi$ be positive continuous functions on $[0,1)$ with $\varphi (r) \to 0$ as $r \to 1$ and $\smallint _0^1\psi (r)\;dr < \infty$. Denote by ${A_0}(\varphi )$ and ${A_\infty }(\varphi )$ the Banach spaces of functions*f*analytic in the open unit disc

*D*with $|f(z)|\varphi (|z|) = o(1)$ and $|f(z)|\varphi (|z|) = O(1),|z| \to 1$, respectively. In both spaces $\left \|f\right \|_\varphi = {\sup _D}|f(z)|\varphi (|z|)$. Let ${A^1}(\psi )$ denote the space of functions analytic in

*D*with $\left \|f\right \|_\psi = \smallint {\smallint _D}|f(z)|\psi (|z|)\;dx\;dy < \infty$. The spaces ${A_0}(\varphi ),{A^1}(\psi )$, and ${A_\infty }(\varphi )$ are identified in the obvious way with closed subspaces of ${C_0}(D),{L^1}(D)$, and ${L^\infty }(D)$, respectively. For a large class of weight functions $\varphi ,\psi$ which go to zero at least as fast as some power of $(1 - r)$ but no faster than some other power of $(1 - r)$, we exhibit bounded projections from ${C_0}(D)$ onto ${A_0}(\varphi )$, from ${L^1}(D)$ onto ${A^1}(\psi )$, and from ${L^\infty }(D)$ onto ${A_\infty }(\varphi )$. Using these projections, we show that the dual of ${A_0}(\varphi )$ is topologically isomorphic to ${A^1}(\psi )$ for an appropriate, but not unique choice of $\psi$. In addition, ${A_\infty }(\varphi )$ is topologically isomorphic to the dual of ${A^1}(\psi )$. As an application of the above, the coefficient multipliers of ${A_0}(\varphi ),{A^1}(\psi )$, and ${A_\infty }(\varphi )$ are characterized. Finally, we give an example of a weight function pair $\varphi ,\psi$ for which some of the above results fail.

## References

- Peter L. Duren,
*Theory of $H^{p}$ spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655** - P. L. Duren, B. W. Romberg, and A. L. Shields,
*Linear functionals on $H^{p}$ spaces with $0<p<1$*, J. Reine Angew. Math.**238**(1969), 32โ60. MR**259579** - P. L. Duren and A. L. Shields,
*Coefficient multipliers of $H^{p}$ and $B^{p}$ spaces*, Pacific J. Math.**32**(1970), 69โ78. MR**255825** - G. H. Hardy and J. E. Littlewood,
*Some properties of fractional integrals. II*, Math. Z.**34**(1932), no.ย 1, 403โ439. MR**1545260**, DOI 10.1007/BF01180596
E. Landau, - L. A. Rubel and A. L. Shields,
*The second duals of certain spaces of analytic functions*, J. Austral. Math. Soc.**11**(1970), 276โ280. MR**0276744**
J. H. Shapiro, A. L. Shields and G. D. Taylor, - A. Zygmund,
*On the preservation of classes of functions*, J. Math. Mech.**8**(1959), 889โ895; erratum: 9 (1959), 663. MR**0117498**, DOI 10.1512/iumj.1960.9.59040
โ,

*Darstellung und Begrรผndung einiger neuerer Ergebnisse der Funktionentheorie*, Springer-Verlag, Berlin, 1929. J. Lindenstrauss and A. Peลczyรบski,

*Contributions to the theory of the classical Banach spaces*(preprint).

*The second duals of some function spaces*(preprint).

*Trigonometric series*, Vols. 1, 2, 2nd ed., Cambridge Univ. Press, London, 1968. MR

**38**#4882.

## Bibliographic Information

- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**162**(1971), 287-302 - MSC: Primary 46.30; Secondary 30.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0283559-3
- MathSciNet review: 0283559