Bonded projections, duality, and multipliers in spaces of analytic functions
HTML articles powered by AMS MathViewer
- by A. L. Shields and D. L. Williams
- Trans. Amer. Math. Soc. 162 (1971), 287-302
- DOI: https://doi.org/10.1090/S0002-9947-1971-0283559-3
- PDF | Request permission
Abstract:
Let $\varphi$ and $\psi$ be positive continuous functions on $[0,1)$ with $\varphi (r) \to 0$ as $r \to 1$ and $\smallint _0^1\psi (r)\;dr < \infty$. Denote by ${A_0}(\varphi )$ and ${A_\infty }(\varphi )$ the Banach spaces of functions f analytic in the open unit disc D with $|f(z)|\varphi (|z|) = o(1)$ and $|f(z)|\varphi (|z|) = O(1),|z| \to 1$, respectively. In both spaces $\left \|f\right \|_\varphi = {\sup _D}|f(z)|\varphi (|z|)$. Let ${A^1}(\psi )$ denote the space of functions analytic in D with $\left \|f\right \|_\psi = \smallint {\smallint _D}|f(z)|\psi (|z|)\;dx\;dy < \infty$. The spaces ${A_0}(\varphi ),{A^1}(\psi )$, and ${A_\infty }(\varphi )$ are identified in the obvious way with closed subspaces of ${C_0}(D),{L^1}(D)$, and ${L^\infty }(D)$, respectively. For a large class of weight functions $\varphi ,\psi$ which go to zero at least as fast as some power of $(1 - r)$ but no faster than some other power of $(1 - r)$, we exhibit bounded projections from ${C_0}(D)$ onto ${A_0}(\varphi )$, from ${L^1}(D)$ onto ${A^1}(\psi )$, and from ${L^\infty }(D)$ onto ${A_\infty }(\varphi )$. Using these projections, we show that the dual of ${A_0}(\varphi )$ is topologically isomorphic to ${A^1}(\psi )$ for an appropriate, but not unique choice of $\psi$. In addition, ${A_\infty }(\varphi )$ is topologically isomorphic to the dual of ${A^1}(\psi )$. As an application of the above, the coefficient multipliers of ${A_0}(\varphi ),{A^1}(\psi )$, and ${A_\infty }(\varphi )$ are characterized. Finally, we give an example of a weight function pair $\varphi ,\psi$ for which some of the above results fail.References
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on $H^{p}$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32โ60. MR 259579
- P. L. Duren and A. L. Shields, Coefficient multipliers of $H^{p}$ and $B^{p}$ spaces, Pacific J. Math. 32 (1970), 69โ78. MR 255825
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no.ย 1, 403โ439. MR 1545260, DOI 10.1007/BF01180596 E. Landau, Darstellung und Begrรผndung einiger neuerer Ergebnisse der Funktionentheorie, Springer-Verlag, Berlin, 1929. J. Lindenstrauss and A. Peลczyรบski, Contributions to the theory of the classical Banach spaces (preprint).
- L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276โ280. MR 0276744 J. H. Shapiro, A. L. Shields and G. D. Taylor, The second duals of some function spaces (preprint).
- A. Zygmund, On the preservation of classes of functions, J. Math. Mech. 8 (1959), 889โ895; erratum: 9 (1959), 663. MR 0117498, DOI 10.1512/iumj.1960.9.59040 โ, Trigonometric series, Vols. 1, 2, 2nd ed., Cambridge Univ. Press, London, 1968. MR 38 #4882.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 162 (1971), 287-302
- MSC: Primary 46.30; Secondary 30.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-0283559-3
- MathSciNet review: 0283559