Bounds on the ratio $n(r, a)/S(r)$ for meromorphic functions
HTML articles powered by AMS MathViewer
- by Joseph Miles
- Trans. Amer. Math. Soc. 162 (1971), 383-393
- DOI: https://doi.org/10.1090/S0002-9947-1971-0285711-X
- PDF | Request permission
Abstract:
Let f be a meromorphic function in the plane. We prove the existence of an absolute constant K such that if ${a_1},{a_2}, \ldots ,{a_q}$ are distinct elements of the Riemann sphere then $\lim {\inf _{r \to \infty }}\;(\Sigma _{j = 1}^q|n(r,{a_j})/S(r) - 1|) < K$. We show by example that in general no such bound exists for the corresponding upper limit. These results involving the unintegrated functionals of Nevanlinna theory are related to previous work of Ahlfors, Hayman and Stewart, and the author.References
- Lars Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), no. 1, 157–194 (German). MR 1555403, DOI 10.1007/BF02420945
- W. H. J. Fuchs, A theorem on the Nevanlinna deficiencies of meromorphic functions of finite order, Ann. of Math. (2) 68 (1958), 203–209. MR 100677, DOI 10.2307/1970242
- W. K. Hayman, An inequality for real positive functions, Proc. Cambridge Philos. Soc. 48 (1952), 93–105. MR 45775, DOI 10.1017/s0305004100027407
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- W. K. Hayman and F. M. Stewart, Real inequalities with applications to function theory, Proc. Cambridge Philos. Soc. 50 (1954), 250–260. MR 61638, DOI 10.1017/s0305004100029297
- Joseph Miles, On the counting function for the $a$-values of a meromorphic function, Trans. Amer. Math. Soc. 147 (1970), 203–222. MR 254245, DOI 10.1090/S0002-9947-1970-0254245-X
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 162 (1971), 383-393
- MSC: Primary 30.61
- DOI: https://doi.org/10.1090/S0002-9947-1971-0285711-X
- MathSciNet review: 0285711