Automorphisms of Siegel domains
HTML articles powered by AMS MathViewer
- by O. S. Rothaus
- Trans. Amer. Math. Soc. 162 (1971), 351-382
- DOI: https://doi.org/10.1090/S0002-9947-1971-0293124-X
- PDF | Request permission
Abstract:
This paper studies nonaffine biholomorphisms from one tube domain to a second. A sequel will carry out the same study for arbitrary Siegel domains. With the help of the Bergman kernel function, we can give an explicit form for such biholomorphisms; and with the use of structure theory for Jordan algebras, we can give an algebraic and geometric description of the nature of such tube domains.References
- Garrett Birkhoff and Phillip M. Whitman, Representation of Jordan and Lie algebras, Trans. Amer. Math. Soc. 65 (1949), 116–136. MR 29366, DOI 10.1090/S0002-9947-1949-0029366-6
- F. D. Jacobson and N. Jacobson, Classification and representation of semi-simple Jordan algebras, Trans. Amer. Math. Soc. 65 (1949), 141–169. MR 29367, DOI 10.1090/S0002-9947-1949-0029367-8
- Soji Kaneyuki, On the automorphism groups of homogeneuous bounded domains, J. Fac. Sci. Univ. Tokyo Sect. I 14 (1967), 89–130 (1967). MR 227472
- Wilhelm Kaup, Yozô Matsushima, and Takushiro Ochiai, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math. 92 (1970), 475–498. MR 267127, DOI 10.2307/2373335 M. Koecher, Jordan algebras and their applications, Lecture Notes, University of Minnesota, Minneapolis, Minn., 1962.
- Oscar S. Rothaus, Domains of positivity, Abh. Math. Sem. Univ. Hamburg 24 (1960), 189–235. MR 121810, DOI 10.1007/BF02942030
- O. S. Rothaus, The construction of homogeneous convex cones, Ann. of Math. (2) 83 (1966), 358–376. MR 202156, DOI 10.2307/1970436
- O. S. Rothaus, Some properties of Laplace transforms of measures, Trans. Amer. Math. Soc. 131 (1968), 163–169. MR 227466, DOI 10.1090/S0002-9947-1968-0227466-0
- Masaru Takeuchi, On infinitesimal affine automorphisms of Siegel domains, Proc. Japan Acad. 45 (1969), 590–594. MR 265521
- È. B. Vinberg, S. G. Gindikin, and I. I. Pjateckiĭ-Šapiro, Classification and canonical realization of complex homogeneous bounded domains, Trudy Moskov. Mat. Obšč. 12 (1963), 359–388 (Russian). MR 0158415
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 162 (1971), 351-382
- MSC: Primary 32N05
- DOI: https://doi.org/10.1090/S0002-9947-1971-0293124-X
- MathSciNet review: 0293124