Dirichlet spaces and strong Markov processes
HTML articles powered by AMS MathViewer
- by Masatoshi Fukushima
- Trans. Amer. Math. Soc. 162 (1971), 185-224
- DOI: https://doi.org/10.1090/S0002-9947-1971-0295435-0
- PDF | Request permission
Abstract:
We show that there exists a suitable strong Markov process on the underlying space of each regular Dirichlet space. Potential theoretic concepts due to A. Beurling and J. Deny are then described in terms of the associated strong Markov process. The proof is carried out by developing potential theory for Dirichlet spaces and symmetric Ray processes and by using a method of transformation of underlying spaces.References
- A. Beurling and J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 208–215. MR 106365, DOI 10.1073/pnas.45.2.208
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- Jacques Deny, Théorie de la capacité dans les espaces fonctionnels, Sém. Théorie Potentiel, dirigé par M. Brelot, G. Choquet et J. Deny, 1964/65, Secrétariat mathématique, Paris, 1964/1965, pp. Exp. 1, 13 (French). MR 0190367
- Potential theory, Centro Internazionale Matematico Estivo (C.I.M.E.), Edizioni Cremonese, Rome, 1970. I Ciclo, Stresa, 2–10 Luglio 1969; Coordinatore: M. Brelot. MR 0271378
- J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 21 (1945), 305–370 (1955) (French). MR 74787
- J. L. Doob, Applications to analysis of a topological definition of smallness of a set, Bull. Amer. Math. Soc. 72 (1966), 579–600. MR 203665, DOI 10.1090/S0002-9904-1966-11533-1
- E. B. Dynkin, Markovskie protsessy, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 0193670
- Masatoshi Fukushima, A construction of reflecting barrier Brownian motions for bounded domains, Osaka Math. J. 4 (1967), 183–215. MR 231444
- Masatoshi Fukushima, On Dirichlet spaces and Dirichlet rings, Proc. Japan Acad. 45 (1969), 433–436. MR 253395
- Masatoshi Fukushima, Regular representations of Dirichlet spaces, Trans. Amer. Math. Soc. 155 (1971), 455–473. MR 281256, DOI 10.1090/S0002-9947-1971-0281256-1
- G. A. Hunt, Markoff processes and potentials. I, II, Illinois J. Math. 1 (1957), 44–93, 316–369. MR 91349
- Kiyoshi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965. MR 0199891
- Hiroshi Kunita and Takesi Watanabe, Some theorems concerning resolvents over locally compact spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 131–164. MR 0214148
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
- Paul-André Meyer, Processus de Markov, Lecture Notes in Mathematics, No. 26, Springer-Verlag, Berlin-New York, 1967 (French). MR 0219136
- Mitsuru Nakai, Algebraic criterion on quasiconformal equivalence of Riemann surfaces, Nagoya Math. J. 16 (1960), 157–184. MR 110801
- Daniel Ray, Resolvents, transition functions, and strongly Markovian processes, Ann. of Math. (2) 70 (1959), 43–72. MR 107302, DOI 10.2307/1969891
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 162 (1971), 185-224
- MSC: Primary 60J45
- DOI: https://doi.org/10.1090/S0002-9947-1971-0295435-0
- MathSciNet review: 0295435