Symmetrization of distributions and its application
HTML articles powered by AMS MathViewer
- by Kuang-ho Chen
- Trans. Amer. Math. Soc. 162 (1971), 455-471
- DOI: https://doi.org/10.1090/S0002-9947-1971-0415308-X
- PDF | Request permission
Abstract:
Let P be a polynomial such that k of the $n - 1$ principal curvatures are different from zero at each point of $N(P) = \{ s \in {R^n}:P(s) = 0\} ;N(P)$ is assumed to be nonempty, bounded, and $n - 1$ dimensional. If ${\text {Supp}}\;\varphi \subset {U^\delta } = \{ s \in {R^n}:|P(s)| < \delta \}$ with $\delta$ small and $\varphi \in C_c^\infty ({R^n})$, let ${\varphi ^\rho }$ be the integral of $\varphi$ over $N(P - q)$ if $q \in [ - \delta ,\delta ]$ and ${\varphi ^\sigma }(s) = {\varphi ^\rho }(P(s))$ on ${U^\delta }$ and $= 0$ outside ${U^\delta }$. Then ${\varphi ^\sigma } \in C_c^\infty ({R^n})$. We define the symmetrization ${v^\sigma }$ of a distribution v, with ${\text {Supp}}\;v \subset {U^\delta }$, in a natural way. Setting $u = {\mathcal {F}^{ - 1}}\{ v\}$ and ${u_0} = {\mathcal {F}^{ - 1}}\{ {v^\sigma }\}$, we prove that ${u_0}$ is the integral of the product of u with some function $w(,)$ which depends only on P. This result is used to prove a Liouville type theorem for entire solutions of $P( - i{D_x})u(x) = f(x)$, with $f \in C_c^\infty ({R^n})$.References
- A. S. Besicovitch, Almost periodic functions, Cambridge Univ. Press, Cambridge, 1932.
- Avner Friedman, Generalized functions and partial differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0165388
- Avner Friedman, Entire solutions of partial differential equations with constant coefficients, Duke Math. J. 31 (1964), 235–240. MR 162053
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 2. Spaces of fundamental and generalized functions, Academic Press, New York-London, 1968. Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. MR 0230128
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 3: Theory of differential equations, Academic Press, New York-London, 1967. Translated from the Russian by Meinhard E. Mayer. MR 0217416
- I. M. Gel′fand and Z. Ya. Šapiro, Homogeneous functions and their extensions, Amer. Math. Soc. Transl. (2) 8 (1958), 21–85. MR 0094547
- Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. MR 155146, DOI 10.1090/S0002-9904-1963-11025-3
- Walter Littman, Decay at infinity of solutions to partial differential equations with constant coefficients, Trans. Amer. Math. Soc. 123 (1966), 449–459. MR 197951, DOI 10.1090/S0002-9947-1966-0197951-7
- Charles Roumieu, Ultra-distributions définies sur $R^{n}$ et sur certaines classes de variétés différentiables, J. Analyse Math. 10 (1962/63), 153–192 (French). MR 158261, DOI 10.1007/BF02790307 L. Schwartz, Théorie des distributions. Tomes 1, 2, Actualités Sci. Indust., no. 1091, 1122, Hermann, Paris, 1950, 1951. MR 12, 31; 833.
- J. F Treves, Lectures on linear partial differential equations with constant coefficients, Notas de Matemática, No. 27, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1961. MR 0155078
- François Trèves, Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions, Mathematics and its Applications, Vol. 6, Gordon and Breach Science Publishers, New York-London-Paris, 1966. MR 0224958
- François Trèves, Differential polynomials and decay at infinity, Bull. Amer. Math. Soc. 66 (1960), 184–186. MR 117448, DOI 10.1090/S0002-9904-1960-10423-5 R. E. Williamson, R. H. Crowell and W. Trotter, Calculus of vector functions, 2nd ed., Prentice-Hall, Englewood Cliffs, N. J., 1968.
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 162 (1971), 455-471
- MSC: Primary 46F10
- DOI: https://doi.org/10.1090/S0002-9947-1971-0415308-X
- MathSciNet review: 0415308