Homology in varieties of groups. I
HTML articles powered by AMS MathViewer
- by C. R. Leedham-Green
- Trans. Amer. Math. Soc. 162 (1971), 1-14
- DOI: https://doi.org/10.1090/S0002-9947-1971-99930-9
- PDF | Request permission
Part II: Trans. Amer. Math. Soc. (1971), 15-25
Part III: Trans. Amer. Math. Soc. (1971), 27-33
Abstract:
Well-known techniques allow one to construct a (co-) homology theory relative to a variety. After two paragraphs which discuss the modules to be considered and the construction of the (co-) homology groups, we come to our main homological result, namely that the theory is not always equivalent to a Tor or Ext. In the fourth paragraph we prove our main group-theoretic result; two covering groups of a finite group generate the same variety “up to exponent". Finally we produce a restricted version of the Künneth formula.References
- Michel André, Méthode simpliciale en algèbre homologique et algèbre commutative, Lecture Notes in Mathematics, Vol. 32, Springer-Verlag, Berlin-New York, 1967 (French). MR 0214644 F. Bachmann, Kategorische Homologietheorie und Spectralsequenzen, Math. Report #17, Battelle Institute, 1969 (mimeograph).
- Michael Barr and Jon Beck, Acyclic models and triples, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 336–343. MR 0245649
- Michael Barr and Jon Beck, Homology and standard constructions, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67) Springer, Berlin, 1969, pp. 245–335. MR 0258917 J. Beck, Triples and cohomology, Thesis, Columbia University, New York, 1965.
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480 S. Eilenberg and S. Mac Lane, Acyclic models, Amer. J. Math. 75 (1953), 189-199. MR 14, 670.
- Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 53938, DOI 10.2307/1969736
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- J. Knopfmacher, Extentions in varieties of groups and algebras, Acta Math. 115 (1966), 17–50. MR 213423, DOI 10.1007/BF02392201 B. Mitchell, Rings with several objects, Dalhousie University, 1970 (mimeograph).
- Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899
- G. S. Rinehart, Satellites and cohomology, J. Algebra 12 (1969), 295–329. MR 245647, DOI 10.1016/0021-8693(69)90032-5
- G. S. Rinehart, Errata: “Satellites and cohomology”, J. Algebra 14 (1970), 125–126. MR 248201, DOI 10.1016/0021-8693(70)90139-0 I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, Crelle 127 (1904), 20-50. —, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, Crelle 132 (1907), 85-137.
- Urs Stammbach, Homological methods in group varieties, Comment. Math. Helv. 45 (1970), 287–298. MR 274561, DOI 10.1007/BF02567332
- Myles Tierney and Wolfgang Vogel, Simplicial derived functors, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 167–180. MR 0242922
- Freidrich Ulmer, Acyclic models and Kan extensions, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 181–204. MR 0257186
- Freidrich Ulmer, Acyclic models and Kan extensions, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 181–204. MR 0257186
Bibliographic Information
- © Copyright 1971 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 162 (1971), 1-14
- MSC: Primary 20.50; Secondary 18.00
- DOI: https://doi.org/10.1090/S0002-9947-1971-99930-9
- MathSciNet review: 0284510