Criteria for absolute convegence of Fourier series of functions of bounded variation
HTML articles powered by AMS MathViewer
- by Ingemar Wik
- Trans. Amer. Math. Soc. 163 (1972), 1-24
- DOI: https://doi.org/10.1090/S0002-9947-1972-0285851-6
- PDF | Request permission
Abstract:
The usual criteria for establishing that a function of bounded variation or an absolutely continuous function has an absolutely convergent Fourier series are given in terms of the modulus of continuity, the integrated modulus of continuity or conditions on the derivative. The relations between these criteria are investigated. A class of functions is constructed to provide counterexamples which show to what extent the existing theorems are best possible. In the case of absolutely continuous functions a few new criteria are given involving the variation of the given function. A couple of necessary and sufficient conditions are given for a class of absolutely continuous functions to have absolutely convergent Fourier series.References
- N. K. Bari, Trigonometricheskie ryady, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). With the editorial collaboration of P. L. Ul′janov. MR 0126115
- Masako Izumi and Shin-ichi Izumi, On absolute convergence of Fourier series, Ark. Mat. 7 (1967), 177–184 (1967). MR 221195, DOI 10.1007/BF02591034
- J.-P. Kahane, Sur certaines classes de séries de Fourier absolument convergentes, J. Math. Pures Appl. (9) 35 (1956), 249–259 (French). MR 97682
- Béla Sz.-Nagy, Séries et intégrales de Fourier des fonctions monotones non bornées, Acta Univ. Szeged. Sect. Sci. Math. 13 (1949), 118–135 (French). MR 34872
- R. Salem, On a theorem of Zygmund, Duke Math. J. 10 (1943), 23–31. MR 7542
- Otto Szász, Fourier series and mean moduli of continuity, Trans. Amer. Math. Soc. 42 (1937), no. 3, 366–395. MR 1501927, DOI 10.1090/S0002-9947-1937-1501927-6
- Ingemar Wik, Extrapolation of absolutely convergent Fourier series by identically zero, Ark. Mat. 6 (1965), 65–76 (1965). MR 196398, DOI 10.1007/BF02591328 A. Zygmund, Sur les fonctions conjuguées, Fund. Math. 13 (1929), 284-303. —, Trigonometrical series, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 163 (1972), 1-24
- MSC: Primary 42.12
- DOI: https://doi.org/10.1090/S0002-9947-1972-0285851-6
- MathSciNet review: 0285851