Factoring functions on Cartesian products
HTML articles powered by AMS MathViewer
- by N. Noble and Milton Ulmer
- Trans. Amer. Math. Soc. 163 (1972), 329-339
- DOI: https://doi.org/10.1090/S0002-9947-1972-0288721-2
- PDF | Request permission
Abstract:
A function on a product space is said to depend on countably many coordinates if it can be written as a function defined on some countable subproduct composed with the projection onto that subproduct. It is shown, for $X$ a completely regular Hausdorff space having uncountably many nontrivial factors, that each continuous real-valued function on $X$ depends on countably many coordinates if and only if $X$ is pseudo-${\aleph _1}$-compact. It is also shown that a product space is pseudo-${\aleph _1}$-compact if and only if each of its finite subproducts is. (This fact derives from a more general theorem which also shows, for example, that a product satisfies the countable chain condition if and only if each of its finite subproducts does.) All of these results are generalized in various ways.References
- . B. A. Anderson, Topologies comparable to metric topologies, Topology Conference, Arizona State University, Tempe, Ariz., 1967, pp. 15-21.
- Steve Armentrout, A Moore space on which every real-valued continuous function is constant, Proc. Amer. Math. Soc. 12 (1961), 106–109. MR 120615, DOI 10.1090/S0002-9939-1961-0120615-3
- W. W. Comfort, A nonpseudocompact product space whose finite subproducts are pseudocompact, Math. Ann. 170 (1967), 41–44. MR 210070, DOI 10.1007/BF01362285 . —, Theory of cardinal invariants, General Topology and its Applications, Springer-Verlag (to appear).
- H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785–796. MR 107222, DOI 10.2307/2372929 . W. W. Comfort and S. Negrepontis, Ultrafilters and the Stone-Čech compactification (to appear).
- Roy O. Davies, An intersection theorem of Erdős and Rado, Proc. Cambridge Philos. Soc. 63 (1967), 995–996. MR 215735, DOI 10.1017/s030500410004202x
- R. Engelking, On functions defined on Cartesian products, Fund. Math. 59 (1966), 221–231. MR 203697, DOI 10.4064/fm-59-2-221-231
- P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90. MR 111692, DOI 10.1112/jlms/s1-35.1.85
- Zdeněk Frolík, On two problems of W. W. Comfort, Comment. Math. Univ. Carolinae 8 (1967), 139–144. MR 210071
- Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 105667, DOI 10.1090/S0002-9947-1959-0105667-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Edwin Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503–509. MR 17527, DOI 10.2307/1969089 . D. Kullman, A note on developable spaces and $p$-spaces (to appear).
- Edward Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), 127–143 (French). MR 21680, DOI 10.4064/fm-34-1-127-143 . R. H. Marty, Mazur theorem and $m$-adic spaces, Doctoral Dissertation, Pennsylvania State University, University Park, Pa., 1969.
- S. Mazur, On continuous mappings on Cartesian products, Fund. Math. 39 (1952), 229–238 (1953). MR 55663, DOI 10.4064/fm-39-1-229-238
- E. Michael, A note on intersections, Proc. Amer. Math. Soc. 13 (1962), 281–283. MR 133236, DOI 10.1090/S0002-9939-1962-0133236-4
- A. Miščenko, Several theorems on products of topological spaces, Fund. Math. 58 (1966), 259–284 (Russian). MR 196697
- K. A. Ross and A. H. Stone, Products of separable spaces, Amer. Math. Monthly 71 (1964), 398–403. MR 164314, DOI 10.2307/2313241
- N. A. Shanin, A theorem from the general theory of sets, C. R. (Doklady) Acad. Sci. URSS (N.S.) 53 (1946), 399–400. MR 0018814
- N. A. Shanin, On intersection of open subsets in the product of topological spaces, C. R. (Doklady) Acad. Sci. URSS (N.S.) 53 (1946), 499–501. MR 0018815
- N. A. Šanin, On the product of topological spaces, Trudy Mat. Inst. Steklov. 24 (1948), 112 (Russian). MR 0027310 . M. Ulmer, $C$-embedded II-spaces, Notices Amer. Math. Soc. 16 (1969), 849. Abstract #69T-G105. . —, Continuous functions on product spaces, Doctoral Dissertation, Wesleyan University, Middletown, Conn., 1970. . —, Functions on product spaces, Notices Amer. Math. Soc. 16 (1969), 986-987. Abstract #69T-G134. . —, The countable chain condition, Notices Amer. Math. Soc. 17 (1970), 462-463. Abstract #70T-G24.
- Giovanni Vidossich, Two remarks on A. Gleason’s factorization theorem, Bull. Amer. Math. Soc. 76 (1970), 370–371. MR 256365, DOI 10.1090/S0002-9904-1970-12482-X
- J. N. Younglove, A locally connected, complete Moore space on which every real-valued continuous function is constant, Proc. Amer. Math. Soc. 20 (1969), 527–530. MR 248741, DOI 10.1090/S0002-9939-1969-0248741-6
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 163 (1972), 329-339
- MSC: Primary 54.25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0288721-2
- MathSciNet review: 0288721