A method of symmetrization and applications
HTML articles powered by AMS MathViewer
- by W. E. Kirwan
- Trans. Amer. Math. Soc. 163 (1972), 369-377
- DOI: https://doi.org/10.1090/S0002-9947-1972-0291423-X
- PDF | Request permission
Abstract:
In this paper we define a method of symmetrization for plane domains that includes as special cases methods of symmetrization considered by Szegö and by Marcus. We prove that under this method of symmetrization the mapping radius of a fixed point is not decreased. This fact is used to obtain some results concerning covering properties of Bieberbach-Eilenberg functions.References
- Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 30, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0158038
- M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228–249 (German). MR 1544613, DOI 10.1007/BF01504345
- W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge University Press, Cambridge, 1958. MR 0108586
- Moshe Marcus, Transformations of domains in the plane and applications in the theory of functions, Pacific J. Math. 14 (1964), 613–626. MR 165093
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- G. Szegö, On a certain kind of symmetrization and its applications, Ann. Mat. Pura Appl. (4) 40 (1955), 113–119. MR 77664, DOI 10.1007/BF02416526
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 163 (1972), 369-377
- MSC: Primary 30A26
- DOI: https://doi.org/10.1090/S0002-9947-1972-0291423-X
- MathSciNet review: 0291423