Conjugacy separability of certain Fuchsian groups
HTML articles powered by AMS MathViewer
- by P. F. Stebe
- Trans. Amer. Math. Soc. 163 (1972), 173-188
- DOI: https://doi.org/10.1090/S0002-9947-1972-0292949-5
- PDF | Request permission
Abstract:
Let $G$ be a group. An element $g$ is c.d. in $G$ if and only if given any element $h$ of $G$, either it is conjugate to $h$ or there is a homomorphism $\xi$ from $G$ onto a finite group such that $\xi (g)$ is not conjugate to $\xi (h)$. Following A. Mostowski, a group is conjugacy separable or c.s. if and only if every element of the group is c.d. Let $F$ be a Fuchsian group, i.e. let $F$ be presented as \[ F = ({S_1}, \ldots ,{S_n},{a_1}, \ldots ,{a_{2r}},{b_1}, \ldots ,{b_t};S_{{1^1}}^e = \cdots = S_{{n^n}}^e = {S_1} \ldots {S_n}{a_1} \ldots {a_{2r}}a_1^{ - 1} \ldots a_{2r}^{ - 1}{b_1} \ldots {b_t} = 1).\] In this paper, we show that every element of infinite order in $F$ is c.d. and if $t \ne 0$ or $r \ne 0$, $F$ is c.s.References
- Karen N. Frederick, The Hopfian property for a class of fundamental groups, Comm. Pure Appl. Math. 16 (1963), 1–8. MR 149460, DOI 10.1002/cpa.3160160102
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
- J. Mennicke, Eine Bemerkung über Fuchssche Gruppen, Invent. Math. 2 (1967), 301–305 (German). MR 207852, DOI 10.1007/BF01425406
- A. Włodzimierz Mostowski, On the decidability of some problems in special classes of groups, Fund. Math. 59 (1966), 123–135. MR 224693, DOI 10.4064/fm-59-2-123-135
- P. F. Stebe, A residual property of certain groups, Proc. Amer. Math. Soc. 26 (1970), 37–42. MR 260874, DOI 10.1090/S0002-9939-1970-0260874-5
- Peter F. Stebe, Conjugacy separability of certain free products with amalgamation, Trans. Amer. Math. Soc. 156 (1971), 119–129. MR 274597, DOI 10.1090/S0002-9947-1971-0274597-5
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 163 (1972), 173-188
- MSC: Primary 20H10; Secondary 10D05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0292949-5
- MathSciNet review: 0292949