The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations
HTML articles powered by AMS MathViewer
- by Richard D. Mosak PDF
- Trans. Amer. Math. Soc. 163 (1972), 277-310 Request permission
Abstract:
Let $G$ be a locally compact group, and $B$ a subgroup of the (topologized) group $\operatorname {Aut} (G)$ of topological automorphisms of $G$; $G$ is an $[FIA]_B^ -$ group if $B$ has compact closure in $\operatorname {Aut} (G)$. Abelian and compact groups are $[FIA]_B^ -$ groups, with $B = I(G)$; the purpose of this paper is to generalize certain theorems about the group algebras and representations of these familiar groups to the case of general $[FIA]_B^ -$ groups. One defines the set ${\mathfrak {X}_B}$ of $B$-characters to consist of the nonzero extreme points of the set of continuous positive-definite $B$-invariant functions $\phi$ on $G$ with $\phi (1) \leqq 1$. ${\mathfrak {X}_B}$ is naturally identified with the set of pure states on the subalgebra of $B$-invariant elements of ${C^\ast }(G)$. When this subalgebra is commutative, this identification yields generalizations of known duality results connecting the topology of $G$ with that of $\hat G$. When $B = I(G),{\mathfrak {X}_B}$ can be identified with the structure spaces of ${C^\ast }(G)$ and ${L^1}(G)$, and one obtains thereby information about representations of $G$ and ideals in ${L^1}(G)$. When $G$ is an $[FIA]_B^ -$ group, one has under favorable conditions a simple integral formula and a functional equation for the $B$-characters. ${L^1}(G)$ and ${C^\ast }(G)$ are âsemisimpleâ in a certain sense (in the two cases $B = (1)$ and $B = I(G)$ this âsemisimplicityâ reduces to weak and strong semisimplicity, respectively). Finally, the $B$-characters have certain separation properties, on the level of the group and the group algebras, which extend to ${[SIN]_B}$ groups (groups which contain a fundamental system of compact $B$-invariant neighborhoods of the identity). When $B = I(G)$ these properties generalize known results about separation of conjugacy classes by characters in compact groups; for example, when $B = (1)$ they reduce to a form of the Gelfand-Raikov theorem about âsufficiently manyâ irreducible unitary representations.References
- Lawrence Baggett, A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc. 132 (1968), 175â215. MR 409720, DOI 10.1090/S0002-9947-1968-0409720-2
- Jean Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl. (9) 27 (1948), 1â85 (French). MR 25473
- G. van Dijk, On symmetry of group algebras of motion groups, Math. Ann. 179 (1969), 219â226. MR 248530, DOI 10.1007/BF01358489
- Jacques Dixmier, Les $C^{\ast }$-algĂšbres et leurs reprĂ©sentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Ăditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- J. M. G. Fell, The dual spaces of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 94 (1960), 365â403. MR 146681, DOI 10.1090/S0002-9947-1960-0146681-0
- Roger Godement, Analyse harmonique dans les groupes centraux. I. Fonctions centrales et caractĂšres, C. R. Acad. Sci. Paris 225 (1947), 19â21 (French). MR 21000
- Roger Godement, Les fonctions de type positif et la thĂ©orie des groupes, Trans. Amer. Math. Soc. 63 (1948), 1â84 (French). MR 23243, DOI 10.1090/S0002-9947-1948-0023243-1
- Roger Godement, Introduction aux travaux de A. Selberg, SĂ©minaire Bourbaki, Vol. 4, Soc. Math. France, Paris, 1995, pp. Exp. No. 144, 95â110 (French). MR 1610957
- Roger Godement, MĂ©moire sur la thĂ©orie des caractĂšres dans les groupes localement compacts unimodulaires, J. Math. Pures Appl. (9) 30 (1951), 1â110 (French). MR 41857
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1â40. MR 284541, DOI 10.1515/crll.1971.246.1
- Siegfried Grosser and Martin Moskowitz, Harmonic analysis on central topological groups, Trans. Amer. Math. Soc. 156 (1971), 419â454. MR 276418, DOI 10.1090/S0002-9947-1971-0276418-3
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317â340. MR 209394, DOI 10.1090/S0002-9947-1967-0209394-9
- Siegfried Grosser and Martin Moskowitz, Representation theory of central topological groups, Trans. Amer. Math. Soc. 129 (1967), 361â390. MR 229753, DOI 10.1090/S0002-9947-1967-0229753-8
- SigurÄur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- K. H. Hofmann and Paul Mostert, Splitting in topological groups, Mem. Amer. Math. Soc. 43 (1963), 75. MR 151544
- A. Hulanicki, On positive functionals on a group algebra multiplicative on a subalgebra, Studia Math. 37 (1970/71), 163â171. MR 310547, DOI 10.4064/sm-37-2-163-171
- Kenkichi Iwasawa, Topological groups with invariant compact neighborhoods of the identity, Ann. of Math. (2) 54 (1951), 345â348. MR 43106, DOI 10.2307/1969536
- Eberhard Kaniuth, Zur harmonischen Analyse klassenkompakter Gruppen, Math. Z. 110 (1969), 297â305 (German). MR 263992, DOI 10.1007/BF01110324
- Irving Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399â418. MR 31193
- A. A. Kirillov, Positive-definite functions on a group of matrices with elements from a discrete field, Dokl. Akad. Nauk SSSR 162 (1965), 503â505 (Russian). MR 0193183
- H. Leptin, Zur harmonischen Analyse klassenkompakter Gruppen, Invent. Math. 5 (1968), 249â254 (German). MR 233936, DOI 10.1007/BF01389775
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101â139. MR 44536, DOI 10.2307/1969423
- G. D. Mostow, On an assertion of Weil, Ann. of Math. (2) 54 (1951), 339â344. MR 43105, DOI 10.2307/1969535
- H. Reiter, Contributions to harmonic analysis. IV, Math. Ann. 135 (1958), 467â476. MR 104106, DOI 10.1007/BF01342960
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- I. E. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), 69â105. MR 19617, DOI 10.1090/S0002-9947-1947-0019617-4
- Elmar Thoma, Ăber unitĂ€re Darstellungen abzĂ€hlbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111â138 (German). MR 160118, DOI 10.1007/BF01361180
- Elmar Thoma, Zur harmonischen Analyse klassenfiniter Gruppen, Invent. Math. 3 (1967), 20â42 (German). MR 213479, DOI 10.1007/BF01425489
- Nicholas Th. Varopoulos, Sur les formes positives dâune algĂšbre de Banach, C. R. Acad. Sci. Paris 258 (1964), 2465â2467 (French). MR 194915
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 163 (1972), 277-310
- MSC: Primary 22D12; Secondary 46L05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293016-7
- MathSciNet review: 0293016