Using additive functionals to embed preassigned distributions in symmetric stable processes
HTML articles powered by AMS MathViewer
- by Itrel Monroe
- Trans. Amer. Math. Soc. 163 (1972), 131-146
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298768-8
- PDF | Request permission
Abstract:
Following Skorokhod, several authors in recent years have proposed methods to define a stopping time $T$ for Brownian motion $({X_t},{\mathcal {F}_t})$ such that ${X_T}$ will have some preassigned distribution. In this paper a method utilizing additive functionals is explored. It is applicable not only to Brownian motion but all symmetric stable processes of index $\alpha > 1$. Using this method one is able to obtain any distribution having a finite $\alpha - 1$ absolute moment. There is also a discussion of the problem of approximating symmetric stable processes with random walks.References
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- R. M. Blumenthal, R. K. Getoor, and D. B. Ray, On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc. 99 (1961), 540–554. MR 126885, DOI 10.1090/S0002-9947-1961-0126885-4
- Lester E. Dubins, On a theorem of Skorohod, Ann. Math. Statist. 39 (1968), 2094–2097. MR 234520, DOI 10.1214/aoms/1177698036
- R. K. Getoor, Continuous additive functionals of a Markov process with applications to processes with independent increments, J. Math. Anal. Appl. 13 (1966), 132–153. MR 185663, DOI 10.1016/0022-247X(66)90079-5
- R. M. Loynes, Stopping times on Brownian motion: Some properties of Root’s construction, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16 (1970), 211–218. MR 292170, DOI 10.1007/BF00534597
- Henry P. McKean Jr., Sample functions of stable processes, Ann. of Math. (2) 61 (1955), 564–579. MR 69424, DOI 10.2307/1969814
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
- Isaac Namioka, On certain onto maps, Canadian J. Math. 14 (1962), 461–466. MR 139916, DOI 10.4153/CJM-1962-036-9 D. H. Root, Construction of almost surely convergent random processes, Thesis, University of Washington, Seattle, Wash., 1968.
- A. V. Skorohod, Issledovaniya po teorii sluchaĭ nykh protsessov (Stokhasticheskie differentsial′nye uravneniya i predel′nye teoremy dlya protsessov Markova), Izdat. Kiev. Univ., Kiev, 1961 (Russian). MR 0185619
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 163 (1972), 131-146
- MSC: Primary 60J55
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298768-8
- MathSciNet review: 0298768