Fully nuclear and completely nuclear operators with applications to $\mathcal {L}_1-$ and $\mathcal {L}_\infty$-spaces
HTML articles powered by AMS MathViewer
- by C. P. Stegall and J. R. Retherford
- Trans. Amer. Math. Soc. 163 (1972), 457-492
- DOI: https://doi.org/10.1090/S0002-9947-1972-0415277-3
- PDF | Request permission
Abstract:
This paper is devoted to a study of the conjecture of A. Grothendieck that if $E$ and $F$ are Banach spaces and all operators from $E$ to $F$ are nuclear, then $E$ or $F$ must be finite dimensional. Two partial solutions are given to this conjecture (Chapters II and IV). In these chapters, operators we call fully nuclear and completely nuclear are introduced and studied. The principal result of these two chapters is that if $\mathcal {L}(E,F) = \operatorname {FN} (E,F)$ or $\mathcal {L}(E,F) = \operatorname {CN} (E,F)$ (and $E$ is isomorphic to a conjugate space or $E’$ contains a reflexive subspace in the latter case) then one of $E$, $F$ is finite dimensional. Two new properties of Banach spaces are introduced in Chapter I. We call these properties “sufficiently Euclidean” and “the two-series property". Chapter I provides the machinery for all the subsequent chapters. The principal part of the paper (Chapters II and V) is devoted to internal characterizations of the ${\mathcal {L}_\infty }$ - and ${\mathcal {L}_1}$-spaces of Lindenstrauss and Pełlczyhski. These characterizations are in terms of the behavior of various classes of operators from or into these spaces. As a by-product an apparently new characterization of Hilbert spaces is obtained. Finally, Chapter VI is a summary of the known characterizations of ${\mathcal {L}_1}$ - and ${\mathcal {L}_\infty }$ -spaces.References
- S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
S. Banach and S. Mazur, Zur Theorie der linearen Dimension, Studia Math. 4 (1933), 100-112.
- Paul Civin and Bertram Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906–911. MR 90020, DOI 10.1090/S0002-9939-1957-0090020-6
- Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160. MR 0139079
- A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192–197. MR 33975, DOI 10.1073/pnas.36.3.192
- M. M. Grinblyum, On the representation of a space of type $B$ in the form of a direct sum of subspaces, Doklady Akad. Nauk SSSR (N.S.) 70 (1950), 749–752 (Russian). MR 0033977
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79 (French). MR 94682
- A. Grothendieck, Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers, Bol. Soc. Mat. São Paulo 8 (1953), 81–110 (1956) (French). MR 94683
- B. Grünbaum, Projection constants, Trans. Amer. Math. Soc. 95 (1960), 451–465. MR 114110, DOI 10.1090/S0002-9947-1960-0114110-9
- V. I. Gurariĭ, On inclinations of spaces and conditional bases in Banach space, Dokl. Akad. Nauk SSSR 145 (1962), 504–506 (Russian). MR 0152863
- Robert C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518–527. MR 39915, DOI 10.2307/1969430 S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, Monografie Mat., Tom 6, PWN, Warsaw, 1935; reprint, Chelsea, New York, 1951. MR 20 #1148.
- S. Kakutani, Some characterizations of Euclidean space, Jpn. J. Math. 16 (1939), 93–97. MR 895, DOI 10.4099/jjm1924.16.0_{9}3
- Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 112. MR 179580
- J. Lindenstrauss, On a certain subspace of $l_{1}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 539–542. MR 174963
- Joram Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J. 10 (1963), 241–252. MR 169061
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- J. Lindenstrauss and H. P. Rosenthal, The ${\cal L}_{p}$ spaces, Israel J. Math. 7 (1969), 325–349. MR 270119, DOI 10.1007/BF02788865
- A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150–156. (1 foldout) (Russian). MR 0206695
- A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. MR 126145, DOI 10.4064/sm-19-2-209-228 A. Pełczyńiski and M. I. Kadec, Bases, lacunary sequences and complemented subspaces in the spaces ${L_p}$, Studia Math. 21 (1962), 161-176.
- Albrecht Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe Inst. Math. Deutsch. Akad. Wiss. Berlin, Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965 (German). MR 0181888 —, Absolut $p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353.
- Albrecht Pietsch, Quasinukleare Abbildungen in normierten Räumen, Math. Ann. 165 (1966), 76–90 (German). MR 198253, DOI 10.1007/BF01351669
- Haskell P. Rosenthal, Projections onto translation-invariant subspaces of $L^{p}(G)$, Mem. Amer. Math. Soc. 63 (1966), 84. MR 211198
- Haskell P. Rosenthal, On complemented and quasi-complemented subspaces of quotients of $C(S)$ for Stonian $S$, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1165–1169. MR 231185, DOI 10.1073/pnas.60.4.1165
- D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241–255. MR 190708, DOI 10.1112/jlms/s1-40.1.241
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469 L. Schwartz, Produits tensoriels topologiques d’espaces vectoriels topologiques, Séminaire Schwartz de la Faculté des Sciences de Paris, 1953/54, Secrétariat mathématique, Paris, 1954. MR 17, 764.
- Andrew Sobczyk, Projections in Minkowski and Banach spaces, Duke Math. J. 8 (1941), 78–106. MR 3443
- Andrew Sobczyk, Projection of the space $(m)$ on its subspace $(c_0)$, Bull. Amer. Math. Soc. 47 (1941), 938–947. MR 5777, DOI 10.1090/S0002-9904-1941-07593-2 W. Wilson, On the selection of basic sequences in Banach spaces, Thesis, Louisiana State University, Baton Rouge, 1969.
- W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. MR 280983, DOI 10.1007/BF02771464
- Mahlon M. Day, Normed linear spaces, Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094675
- Dwight B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89–108. MR 37465, DOI 10.1090/S0002-9947-1950-0037465-6
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
- J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963), 38–48. MR 146649, DOI 10.1090/S0002-9947-1963-0146649-7
- Gottfried Köthe, Hebbare lokalkonvexe Räume, Math. Ann. 165 (1966), 181–195 (German). MR 196464, DOI 10.1007/BF01343797
- S. Kwapień, Some remarks on $(p,\,q)$-absolutely summing operators in $l_{p}$-spaces, Studia Math. 29 (1968), 327–337. MR 231212, DOI 10.4064/sm-29-3-327-337
- Arne Persson and Albrecht Pietsch, $p$-nukleare une $p$-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19–62 (German). MR 243323, DOI 10.4064/sm-33-1-19-62
- C. P. Stegall, Operator characterizations of ${\cal L}_{1}$ and ${\cal L}_{\infty }$ spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 73–75 (English, with Russian summary). MR 282202
- C. P. Stegall and J. R. Retherford, Fully nuclear operators, Bull. Amer. Math. Soc. 76 (1970), 1077–1081. MR 271707, DOI 10.1090/S0002-9904-1970-12568-X
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 163 (1972), 457-492
- MSC: Primary 46B05; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9947-1972-0415277-3
- MathSciNet review: 0415277